Example #1
0
        /// <summary>
        /// Generate the monthly returns plot using the python libraries.
        /// </summary>
        public override string Render()
        {
            var backtestPoints = ResultsUtil.EquityPoints(_backtest);
            var livePoints     = ResultsUtil.EquityPoints(_live);

            var backtestSeries = new Series <DateTime, double>(backtestPoints.Keys, backtestPoints.Values);
            var liveSeries     = new Series <DateTime, double>(livePoints.Keys, livePoints.Values);

            // Equivalent to python pandas line: `backtestSeries.resample('M').apply(lambda x: x.pct_change().sum())`
            var backtestMonthlyReturns = backtestSeries.ResampleEquivalence(date => new DateTime(date.Year, date.Month, 1).AddMonths(1).AddDays(-1))
                                         .Select(kvp => kvp.Value.PercentChange().Sum());

            var liveMonthlyReturns = liveSeries.ResampleEquivalence(date => new DateTime(date.Year, date.Month, 1).AddMonths(1).AddDays(-1))
                                     .Select(kvp => kvp.Value.PercentChange().Sum());

            var base64 = "";

            using (Py.GIL())
            {
                var backtestResults = new PyDict();
                foreach (var kvp in backtestMonthlyReturns.GroupBy(kvp => kvp.Key.Year).GetObservations())
                {
                    var key    = kvp.Key.ToStringInvariant();
                    var values = (kvp.Value * 100).Values.ToList();

                    while (values.Count != 12)
                    {
                        values.Add(double.NaN);
                    }
                    backtestResults.SetItem(key.ToPython(), values.ToPython());
                }

                var liveResults = new PyDict();
                foreach (var kvp in liveMonthlyReturns.GroupBy(kvp => kvp.Key.Year).GetObservations())
                {
                    var key    = kvp.Key.ToStringInvariant();
                    var values = (kvp.Value * 100).Values.ToList();
                    while (values.Count != 12)
                    {
                        values.Add(double.NaN);
                    }
                    liveResults.SetItem(key.ToPython(), values.ToPython());
                }

                base64 = Charting.GetMonthlyReturns(backtestResults, liveResults);
            }

            return(base64);
        }
Example #2
0
        /// <summary>
        /// Generate the monthly returns plot using the python libraries.
        /// </summary>
        public override string Render()
        {
            var backtestPoints = ResultsUtil.EquityPoints(_backtest);
            var livePoints     = ResultsUtil.EquityPoints(_live);

            var backtestSeries = new Series <DateTime, double>(backtestPoints.Keys, backtestPoints.Values);
            var liveSeries     = new Series <DateTime, double>(livePoints.Keys, livePoints.Values);

            // Equivalent to python pandas line: `backtestSeries.resample('M').apply(lambda x: x.pct_change().sum())`
            var backtestMonthlyReturns = backtestSeries.ResampleEquivalence(date => new DateTime(date.Year, date.Month, 1).AddMonths(1).AddDays(-1))
                                         .Select(kvp => kvp.Value.TotalReturns());

            var liveMonthlyReturns = liveSeries.ResampleEquivalence(date => new DateTime(date.Year, date.Month, 1).AddMonths(1).AddDays(-1))
                                     .Select(kvp => kvp.Value.TotalReturns());

            var base64 = "";

            using (Py.GIL())
            {
                var backtestResults = new PyDict();
                foreach (var kvp in backtestMonthlyReturns.GroupBy(kvp => kvp.Key.Year).GetObservations())
                {
                    var key            = kvp.Key.ToStringInvariant();
                    var monthlyReturns = kvp.Value * 100;

                    var values = new List <double>();
                    for (var i = 1; i <= 12; i++)
                    {
                        var returns = monthlyReturns.Where(row => row.Key.Month == i);
                        if (!returns.IsEmpty)
                        {
                            values.Add(returns.FirstValue());
                            continue;
                        }

                        values.Add(double.NaN);
                    }

                    backtestResults.SetItem(key.ToPython(), values.ToPython());
                }

                var liveResults = new PyDict();
                foreach (var kvp in liveMonthlyReturns.GroupBy(kvp => kvp.Key.Year).GetObservations())
                {
                    var key            = kvp.Key.ToStringInvariant();
                    var monthlyReturns = kvp.Value * 100;

                    var values = new List <double>();
                    for (var i = 1; i <= 12; i++)
                    {
                        var returns = monthlyReturns.Where(row => row.Key.Month == i);
                        if (!returns.IsEmpty)
                        {
                            values.Add(returns.FirstValue());
                            continue;
                        }

                        values.Add(double.NaN);
                    }

                    liveResults.SetItem(key.ToPython(), values.ToPython());
                }

                base64 = Charting.GetMonthlyReturns(backtestResults, liveResults);
            }

            return(base64);
        }