Example #1
0
 public IObservable <Mat> Process(IObservable <Mat> source)
 {
     return(Observable.Defer(() =>
     {
         // subscribe action (i.e. starting bonsai)
         var decoder = LoadMatrix(DecoderFileName, rows: 6);
         var dynamics = LoadMatrix(DynamicsFileName, rows: 6);
         var state = Mat.Zeros(6, BufferSize, Depth.F32, 1);
         // return our processed sequence (with decoder captured in the closure)
         return source.Select(input =>
         {
             var control = new Mat(decoder.Rows, input.Cols, decoder.Depth, decoder.Channels);
             // s_t+1 = As_t + M*e_t
             // (state_dim,num_channels)*(num_channels,acquisition_buffer_length)
             // +
             // (state_dim,state_dim)*(state_dim,1)
             // Console.WriteLine(input.Size);
             // Console.WriteLine(decoder.Size);
             // Console.WriteLine(dynamics.Size);
             DotProduct(decoder, input, control);
             DotProduct(dynamics, state, state);
             CV.Add(control, state, state);
             // have to copy this for the outside world
             return state.Clone();
         });
     }));
 }
Example #2
0
        public void Add_InplaceMat_MatElementsAreDoubled()
        {
            var mat = Mat.FromArray(new byte[, ] {
                { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 }
            });

            CV.Add(mat, mat, mat);
            Assert.AreEqual(2, mat.GetReal(1, 1));
        }
        public override IObservable <Mat> Process(IObservable <Mat> source)
        {
            return(source.Select(input =>
            {
                var channels = Channels;
                var output = new Mat(input.Size, input.Depth, input.Channels);
                var reference = new Mat(1, input.Cols, input.Depth, input.Channels);
                if (channels == null || channels.Length == 0)
                {
                    if (input.Depth != Depth.F32)
                    {
                        var temp = new Mat(reference.Rows, reference.Cols, Depth.F32, reference.Channels);
                        CV.Reduce(input, temp, 0, ReduceOperation.Avg);
                        CV.Convert(temp, reference);
                    }
                    else
                    {
                        CV.Reduce(input, reference, 0, ReduceOperation.Avg);
                    }
                }
                else if (channels.Length == 1)
                {
                    CV.Copy(input.GetRow(channels[0]), reference);
                }
                else
                {
                    var sum = input.Depth != Depth.F32
                        ? new Mat(reference.Rows, reference.Cols, Depth.F32, reference.Channels)
                        : reference;
                    sum.SetZero();
                    for (int i = 0; i < channels.Length; i++)
                    {
                        using (var referenceChannel = input.GetRow(channels[i]))
                        {
                            CV.Add(sum, referenceChannel, sum);
                        }
                    }

                    CV.ConvertScale(sum, reference, 1f / channels.Length);
                }

                CV.Repeat(reference, output);
                CV.Sub(input, output, output);
                return output;
            }));
        }
Example #4
0
        public override IObservable <IplImage> Process(IObservable <IplImage> source)
        {
            return(Observable.Defer(() =>
            {
                var count = 0;
                IplImage mean = null;
                return source.Select(input =>
                {
                    if (mean == null)
                    {
                        mean = new IplImage(input.Size, input.Depth, input.Channels);
                        mean.SetZero();
                    }

                    var output = new IplImage(input.Size, input.Depth, input.Channels);
                    CV.Sub(input, mean, output);
                    CV.ConvertScale(output, output, 1f / ++count, 0);
                    CV.Add(mean, output, mean);
                    CV.Copy(mean, output);
                    return output;
                });
            }));
        }
Example #5
0
        public override IObservable <TArray> Process <TArray>(IObservable <TArray> source)
        {
            return(Observable.Defer(() =>
            {
                var count = 0;
                TArray mean = null;
                var outputFactory = ArrFactory <TArray> .TemplateFactory;
                return source.Select(input =>
                {
                    if (mean == null)
                    {
                        mean = outputFactory(input);
                        mean.SetZero();
                    }

                    var output = outputFactory(input);
                    CV.Sub(input, mean, output);
                    CV.ConvertScale(output, output, 1f / ++count, 0);
                    CV.Add(mean, output, output);
                    mean = output;
                    return output;
                });
            }));
        }
Example #6
0
        public override IObservable <Mat> Process(IObservable <Mat> source)
        {
            return(Observable.Create <Mat>(observer =>
            {
                var carry = 0;
                var index = 0;
                var offset = 0;
                var lottery = 0;
                var scaleFactor = 0.0;
                var currentFactor = 0;
                var buffer = default(Mat);
                var carryBuffer = default(Mat);
                var downsampling = Downsampling;
                var random = downsampling == DownsamplingMethod.Dithering ? new Random() : null;
                var reduceOp = (ReduceOperation)(downsampling - DownsamplingMethod.Sum);
                if (reduceOp == ReduceOperation.Avg)
                {
                    reduceOp = ReduceOperation.Sum;
                }
                var downsample = downsampling == DownsamplingMethod.LowPass ? filter.Process(source) : source;
                return downsample.Subscribe(input =>
                {
                    try
                    {
                        var bufferLength = BufferLength;
                        if (bufferLength == 0)
                        {
                            bufferLength = input.Cols;
                        }
                        if (buffer == null || buffer.Rows != input.Rows || currentFactor != factor)
                        {
                            index = 0;
                            currentFactor = factor;
                            if (downsampling >= DownsamplingMethod.Sum)
                            {
                                carry = currentFactor;
                                carryBuffer = new Mat(input.Rows, 1, input.Depth, input.Channels);
                                if (downsampling == DownsamplingMethod.Avg)
                                {
                                    scaleFactor = 1.0 / currentFactor;
                                }
                                else
                                {
                                    scaleFactor = 0;
                                }
                            }
                            else if (random != null)
                            {
                                lottery = random.Next(currentFactor);
                                offset = lottery;
                            }
                            else
                            {
                                offset = 0;
                            }
                            buffer = CreateBuffer(bufferLength, input);
                        }

                        while (offset < input.Cols)
                        {
                            // Process decimation data on this buffer
                            Rect outputRect;
                            if (downsampling > DownsamplingMethod.LowPass)
                            {
                                outputRect = new Rect(index, 0, 1, input.Rows);
                            }
                            else
                            {
                                var samples = input.Cols - offset;
                                var whole = samples / currentFactor;
                                outputRect = new Rect(index, 0, Math.Min(buffer.Cols - index, whole), input.Rows);
                            }

                            if (downsampling >= DownsamplingMethod.Sum)
                            {
                                // Reduce decimate
                                var inputSamples = Math.Min(input.Cols - offset, carry);
                                var inputRect = new Rect(offset, 0, inputSamples, input.Rows);
                                using (var inputBuffer = input.GetSubRect(inputRect))
                                    using (var outputBuffer = buffer.GetCol(index))
                                    {
                                        if (carry < currentFactor)
                                        {
                                            CV.Reduce(inputBuffer, carryBuffer, 1, reduceOp);
                                            switch (reduceOp)
                                            {
                                            case ReduceOperation.Sum:
                                                CV.Add(outputBuffer, carryBuffer, outputBuffer);
                                                break;

                                            case ReduceOperation.Max:
                                                CV.Max(outputBuffer, carryBuffer, outputBuffer);
                                                break;

                                            case ReduceOperation.Min:
                                                CV.Min(outputBuffer, carryBuffer, outputBuffer);
                                                break;
                                            }
                                        }
                                        else
                                        {
                                            CV.Reduce(inputBuffer, outputBuffer, 1, reduceOp);
                                        }

                                        offset += inputRect.Width;
                                        carry -= inputSamples;
                                        if (carry <= 0)
                                        {
                                            index++;
                                            carry = currentFactor;
                                            if (scaleFactor > 0)
                                            {
                                                CV.ConvertScale(outputBuffer, outputBuffer, scaleFactor);
                                            }
                                        }
                                    }
                            }
                            else if (outputRect.Width > 1)
                            {
                                // Block decimate
                                var inputRect = new Rect(offset, 0, outputRect.Width * currentFactor, input.Rows);
                                using (var inputBuffer = input.GetSubRect(inputRect))
                                    using (var outputBuffer = buffer.GetSubRect(outputRect))
                                    {
                                        CV.Resize(inputBuffer, outputBuffer, SubPixelInterpolation.NearestNeighbor);
                                    }

                                index += outputRect.Width;
                                offset += inputRect.Width;
                            }
                            else
                            {
                                // Decimate single time point
                                using (var inputBuffer = input.GetCol(offset))
                                    using (var outputBuffer = buffer.GetCol(index))
                                    {
                                        CV.Copy(inputBuffer, outputBuffer);
                                    }

                                index++;
                                if (random != null)
                                {
                                    offset += currentFactor - lottery;
                                    lottery = random.Next(currentFactor);
                                    offset += lottery;
                                }
                                else
                                {
                                    offset += currentFactor;
                                }
                            }

                            if (index >= buffer.Cols)
                            {
                                index = 0;
                                observer.OnNext(buffer);
                                buffer = CreateBuffer(bufferLength, input);
                            }
                        }

                        offset -= input.Cols;
                    }
                    catch (Exception ex)
                    {
                        observer.OnError(ex);
                    }
                },
                                            observer.OnError,
                                            () =>
                {
                    // Emit pending buffer
                    if (index > 0)
                    {
                        observer.OnNext(buffer.GetCols(0, index));
                    }

                    buffer = null;
                    observer.OnCompleted();
                });
            }));
        }