Example #1
0
        public static int average_on_border(Bytearray a)
        {
            int sum   = 0;
            int right = a.Dim(0) - 1;
            int top   = a.Dim(1) - 1;

            for (int x = 0; x < a.Dim(0); x++)
            {
                sum += a[x, 0];
            }
            for (int x = 0; x < a.Dim(0); x++)
            {
                sum += a[x, top];
            }
            for (int y = 1; y < top; y++)
            {
                sum += a[0, y];
            }
            for (int y = 1; y < top; y++)
            {
                sum += a[right, y];
            }
            // If average border intensity is between 127-128, inverting the
            // image does not work correctly
            float average_border_intensity = sum / ((right + top) * 2.0f);

            if (!(average_border_intensity <= 127 || average_border_intensity >= 128))
            {
                Console.WriteLine("average border intensity is between 127-128, inverting the image does not work correctly");
            }
            return(sum / ((right + top) * 2));
        }
Example #2
0
 public static void binary_and(Bytearray image, Bytearray image2, int dx, int dy)
 {
     int w = image.Dim(0);
     int h = image.Dim(1);
     for (int i = 0; i < w; i++)
         for (int j = 0; j < h; j++)
             image[i, j] = Math.Min(image[i, j], NarrayUtil.Ext(image2, i - dx, j - dy));
 }
Example #3
0
        public List<List<float>> SpaceCosts(List<Candidate> candidates, Bytearray image)
        {
            /*
                Given a list of character recognition candidates and their
                classifications, and an image of the corresponding text line,
                compute a list of pairs of costs for putting/not putting a space
                after each of the candidate characters.

                The basic idea behind this simple algorithm is to try larger
                and larger horizontal closing operations until most of the components
                start having a "wide" aspect ratio; that's when characters have merged
                into words.  The remaining whitespace should be spaces.

                This is just a simple stopgap measure; it will be replaced with
                trainable space modeling.
             */
            int w = image.Dim(0);
            int h = image.Dim(1);

            Bytearray closed = new Bytearray();
            int r;
            for (r = 0; r < maxrange; r++)
            {
                if (r > 0)
                {
                    closed.Copy(image);
                    Morph.binary_close_circle(closed, r);
                }
                else
                    closed.Copy(image);
                Intarray labeled = new Intarray();
                labeled.Copy(closed);
                ImgLabels.label_components(ref labeled);
                Narray<Rect> rects = new Narray<Rect>();
                ImgLabels.bounding_boxes(ref rects, labeled);
                Floatarray aspects = new Floatarray();
                for (int i = 0; i < rects.Length(); i++)
                {
                    Rect rect = rects[i];
                    float aspect = rect.Aspect();
                    aspects.Push(aspect);
                }
                float maspect = NarrayUtil.Median(aspects);
                if (maspect >= this.aspect_threshold)
                    break;
            }

            // close with a little bit of extra space
            closed.Copy(image);
            Morph.binary_close_circle(closed, r+1);

            // compute the remaining aps
            //Morph.binary_dilate_circle();

            // every character box that ends near a cap gets a space appended

            return null;
        }
Example #4
0
        public static void Thin(ref Bytearray uci)
        {
            int w = uci.Dim(0) - 1;
            int h = uci.Dim(1) - 1;

            for (int i = 0, n = uci.Length1d(); i < n; i++)
            {
                if (uci.At1d(i) > 0)
                    uci.Put1d(i, ON);
                else
                    uci.Put1d(i, OFF);
            }

            bool flag;
            do
            {
                flag = false;
                for (int j = 0; j < 8; j += 2)
                {
                    for (int x = 1; x < w; x++)
                        for (int y = 1; y < h; y++)
                        {
                            if (uci[x, y] != ON)
                                continue;
                            if (uci[x + nx[j], y + ny[j]] != OFF)
                                continue;
                            int b = 0;
                            for (int i = 7; i >= 0; i--)
                            {
                                b <<= 1;
                                b |= (uci[x + nx[i], y + ny[i]] != OFF ? 1 : 0);
                            }
                            if (ttable[b] > 0)
                                uci[x, y] = SKEL;
                            else
                            {
                                uci[x, y] = DEL;
                                flag = true;
                            }
                        }
                    if (!flag)
                        continue;
                    for (int x = 1; x < w; x++)
                        for (int y = 1; y < h; y++)
                            if (uci[x, y] == DEL)
                                uci[x, y] = OFF;
                }
            } while (flag);

            for (int i = 0, n = uci.Length1d(); i < n; i++)
            {
                if (uci.At1d(i) == SKEL)
                    uci.Put1d(i, 255);
                else
                    uci.Put1d(i, 0);
            }
        }
Example #5
0
        public void SetImage(Bytearray image_)
        {
            Bytearray image = new Bytearray();

            //image = image_;
            image.Copy(image_);
            dimage.Copy(image);
            if (PGeti("fill_holes") > 0)
            {
                Bytearray holes = new Bytearray();
                SegmRoutine.extract_holes(ref holes, image);
                for (int i = 0; i < image.Length(); i++)
                {
                    if (holes.At1d(i) > 0)
                    {
                        image.Put1d(i, 255);
                    }
                }
            }
            int w = image.Dim(0), h = image.Dim(1);

            wimage.Resize(w, h);
            wimage.Fill(0);
            float s1 = 0.0f, sy = 0.0f;

            for (int i = 1; i < w; i++)
            {
                for (int j = 0; j < h; j++)
                {
                    if (image[i, j] > 0)
                    {
                        s1++; sy += j;
                    }
                    if (image[i, j] > 0)
                    {
                        wimage[i, j] = inside_weight;
                    }
                    else
                    {
                        wimage[i, j] = outside_weight;
                    }
                }
            }
            if (s1 == 0)
            {
                where = image.Dim(1) / 2;
            }
            else
            {
                where = (int)(sy / s1);
            }
            for (int i = 0; i < dimage.Dim(0); i++)
            {
                dimage[i, where] = 0x008000;
            }
        }
Example #6
0
        public static void binary_or(Bytearray image, Bytearray image2, int dx, int dy)
        {
            int w = image.Dim(0);
            int h = image.Dim(1);

            for (int i = 0; i < w; i++)
            {
                for (int j = 0; j < h; j++)
                {
                    image[i, j] = Math.Max(image[i, j], NarrayUtil.Ext(image2, i - dx, j - dy));
                }
            }
        }
Example #7
0
        public void SetLine(Bytearray image)
        {
            CHECK_ARG(image.Dim(1) < PGeti("maxheight"), "image.Dim(1) < PGeti(\"maxheight\")");

            // run the segmenter

            /*Narray<Rect> bboxes = new Narray<Rect>();
             * Intarray iar = new Intarray();
             * iar.Copy(image);
             * ImgLabels.bounding_boxes(ref bboxes, iar);*/
            //Console.WriteLine("IMG SETLINE: imin:{0} imax:{1}", NarrayUtil.ArgMin(iar), NarrayUtil.ArgMax(iar));
            //Console.WriteLine("INDEX_BLACK:{0} {1} {2} {3}", bboxes[0].x0, bboxes[0].y0, bboxes[0].x1, bboxes[0].y1);
            //ImgIo.write_image_gray("image.png", image);
            OcrRoutine.binarize_simple(binarized, image);
            segmenter.Object.Charseg(ref segmentation, binarized);

            /*Intarray segm = new Intarray();
             * segm.Copy(segmentation);
             * ImgLabels.simple_recolor(segm);
             * ImgIo.write_image_packed("segm_image.png", segm);*/

            //NarrayUtil.Sub(255, binarized);

            SegmRoutine.make_line_segmentation_black(segmentation);
            SegmRoutine.remove_small_components(segmentation, 3, 3);       // i add this line
            ImgLabels.renumber_labels(segmentation, 1);

            // set up the grouper
            grouper.Object.SetSegmentation(segmentation);
        }
Example #8
0
        public void RunTest()
        {
            IBookStore bstore = new SmartBookStore();
            bstore.SetPrefix(@"data2");

            Console.WriteLine("Pages in bookstore: {0}", bstore.NumberOfPages());
            Console.WriteLine("List pages..");
            for (int i = 0; i < bstore.NumberOfPages(); i++)
            {
                Console.WriteLine("page {0:0000}\t->\t{1,6} lines", i, bstore.LinesOnPage(i));
            }
            Bytearray line = new Bytearray();
            bstore.GetLine(line, 1, 5);
            Console.WriteLine("line{0}      [{1},{2}]", 5, line.Dim(0), line.Dim(1));
            Intarray cline = new Intarray();
            bstore.GetCharSegmentation(cline, 1, 5);
            Console.WriteLine("line{0}.cseg [{1},{2}]", 5, cline.Dim(0), cline.Dim(1));
        }
Example #9
0
 /// <summary>
 /// Remove singular points over image.
 /// uses in skeleton segmenter
 /// </summary>
 public static void remove_singular_points(ref Bytearray image, int d)
 {
     for (int i = d; i < image.Dim(0) - d - 1; i++)
     {
         for (int j = d; j < image.Dim(1) - d - 1; j++)
         {
             if (is_singular(image, i, j))
             {
                 for (int k = -d; k <= d; k++)
                 {
                     for (int l = -d; l <= d; l++)
                     {
                         image[i + k, j + l] = 0;
                     }
                 }
             }
         }
     }
 }
Example #10
0
 public static int average_on_border(Bytearray a)
 {
     int sum = 0;
     int right = a.Dim(0) - 1;
     int top = a.Dim(1) - 1;
     for(int x = 0; x < a.Dim(0); x++)
         sum += a[x, 0];
     for(int x = 0; x < a.Dim(0); x++)
         sum += a[x, top];
     for(int y = 1; y < top; y++)
         sum += a[0, y];
     for(int y = 1; y < top; y++)
         sum += a[right, y];
     // If average border intensity is between 127-128, inverting the
     // image does not work correctly
     float average_border_intensity = sum / ((right + top) * 2.0f);
     if (!(average_border_intensity <= 127 || average_border_intensity >= 128))
         Console.WriteLine("average border intensity is between 127-128, inverting the image does not work correctly");
     return sum / ((right + top) * 2);
 }
Example #11
0
        public void RunTest()
        {
            IBookStore bstore = new SmartBookStore();

            bstore.SetPrefix(@"data2");

            Console.WriteLine("Pages in bookstore: {0}", bstore.NumberOfPages());
            Console.WriteLine("List pages..");
            for (int i = 0; i < bstore.NumberOfPages(); i++)
            {
                Console.WriteLine("page {0:0000}\t->\t{1,6} lines", i, bstore.LinesOnPage(i));
            }
            Bytearray line = new Bytearray();

            bstore.GetLine(line, 1, 5);
            Console.WriteLine("line{0}      [{1},{2}]", 5, line.Dim(0), line.Dim(1));
            Intarray cline = new Intarray();

            bstore.GetCharSegmentation(cline, 1, 5);
            Console.WriteLine("line{0}.cseg [{1},{2}]", 5, cline.Dim(0), cline.Dim(1));
        }
Example #12
0
        public override void Charseg(ref Intarray result_segmentation, Bytearray orig_image)
        {
            Logger.Default.Image("segmenting", orig_image);

            int PADDING = 3;

            OcrRoutine.optional_check_background_is_lighter(orig_image);
            Bytearray     image  = new Bytearray();
            Narray <byte> bimage = image;

            image.Copy(orig_image);
            OcrRoutine.binarize_simple(image);
            OcrRoutine.Invert(image);
            ImgOps.pad_by(ref bimage, PADDING, PADDING);
            // pass image to segmenter
            segmenter.SetImage(image);
            // find all cuts in the image
            segmenter.FindAllCuts();
            // choose the best of all cuts
            segmenter.FindBestCuts();

            Intarray segmentation = new Intarray();

            segmentation.Resize(image.Dim(0), image.Dim(1));
            for (int i = 0; i < image.Dim(0); i++)
            {
                for (int j = 0; j < image.Dim(1); j++)
                {
                    segmentation[i, j] = image[i, j] > 0 ? 1 : 0;
                }
            }

            for (int r = 0; r < segmenter.bestcuts.Length(); r++)
            {
                int            c   = segmenter.bestcuts[r];
                Narray <Point> cut = segmenter.cuts[c];
                for (int y = 0; y < image.Dim(1); y++)
                {
                    for (int x = cut[y].X; x < image.Dim(0); x++)
                    {
                        if (segmentation[x, y] > 0)
                        {
                            segmentation[x, y]++;
                        }
                    }
                }
            }
            ImgOps.extract_subimage(result_segmentation, segmentation, PADDING, PADDING,
                                    segmentation.Dim(0) - PADDING, segmentation.Dim(1) - PADDING);

            if (small_merge_threshold > 0)
            {
                SegmRoutine.line_segmentation_merge_small_components(ref result_segmentation, small_merge_threshold);
                SegmRoutine.line_segmentation_sort_x(result_segmentation);
            }

            SegmRoutine.make_line_segmentation_white(result_segmentation);
            // set_line_number(segmentation, 1);
            Logger.Default.Image("resulting segmentation", result_segmentation);
        }
Example #13
0
        public override void SetImage(Bytearray image)
        {
            dimage.Copy(image);
            int w = image.Dim(0), h = image.Dim(1);

            wimage.Resize(w, h);
            wimage.Fill(0);
            float s1 = 0.0f, sy = 0.0f;

            for (int i = 1; i < w; i++)
            {
                for (int j = 0; j < h; j++)
                {
                    if (image[i, j] > 0)
                    {
                        s1++; sy += j;
                    }
                    if (image[i - 1, j] == 0 && image[i, j] > 0)
                    {
                        wimage[i, j] = boundary_weight;
                    }
                    else if (image[i, j] > 0)
                    {
                        wimage[i, j] = inside_weight;
                    }
                    else
                    {
                        wimage[i, j] = outside_weight;
                    }
                }
            }
            where = (int)(sy / s1);
            for (int i = 0; i < dimage.Dim(0); i++)
            {
                dimage[i, where] = 0x008000;
            }
        }
Example #14
0
        public override void Charseg(ref Intarray segmentation, Bytearray inraw)
        {
            Logger.Default.Image("segmenting", inraw);

            OcrRoutine.optional_check_background_is_lighter(inraw);
            Bytearray image = new Bytearray();

            image.Copy(inraw);
            OcrRoutine.binarize_simple(image);
            OcrRoutine.Invert(image);

            segmenter.SetImage(image);
            segmenter.FindAllCuts();
            segmenter.FindBestCuts();

            Intarray seg = new Intarray();

            seg.Copy(image);

            for (int r = 0; r < segmenter.bestcuts.Length(); r++)
            {
                int            w   = seg.Dim(0);
                int            c   = segmenter.bestcuts[r];
                Narray <Point> cut = segmenter.cuts[c];
                for (int y = 0; y < image.Dim(1); y++)
                {
                    for (int i = -1; i <= 1; i++)
                    {
                        int x = cut[y].X;
                        if (x < 1 || x >= w - 1)
                        {
                            continue;
                        }
                        seg[x + i, y] = 0;
                    }
                }
            }
            ImgLabels.label_components(ref seg);
            // dshowr(seg,"YY"); dwait();
            segmentation.Copy(image);
            ImgLabels.propagate_labels_to(ref segmentation, seg);

            SegmRoutine.line_segmentation_merge_small_components(ref segmentation, small_merge_threshold);
            SegmRoutine.line_segmentation_sort_x(segmentation);

            SegmRoutine.make_line_segmentation_white(segmentation);
            // set_line_number(segmentation, 1);
            Logger.Default.Image("resulting segmentation", segmentation);
        }
Example #15
0
        public static int neighbors(Bytearray image, int i, int j)
        {
            if (i < 1 || i >= image.Dim(0) - 1 || j < 1 || j > image.Dim(1) - 1)
            {
                return(0);
            }
            if (image[i, j] == 0)
            {
                return(0);
            }
            int count = -1;

            for (int k = -1; k <= 1; k++)
            {
                for (int l = -1; l <= 1; l++)
                {
                    if (image[i + k, j + l] > 0)
                    {
                        count++;
                    }
                }
            }
            return(count);
        }
Example #16
0
        public override void Charseg(ref Intarray segmentation, Bytearray inraw)
        {
            Logger.Default.Image("segmenting", inraw);

            OcrRoutine.optional_check_background_is_lighter(inraw);
            Bytearray image = new Bytearray();
            image.Copy(inraw);
            OcrRoutine.binarize_simple(image);
            OcrRoutine.Invert(image);

            segmenter.SetImage(image);
            segmenter.FindAllCuts();
            segmenter.FindBestCuts();

            Intarray seg = new Intarray();
            seg.Copy(image);

            for (int r = 0; r < segmenter.bestcuts.Length(); r++)
            {
                int w = seg.Dim(0);
                int c = segmenter.bestcuts[r];
                Narray<Point> cut = segmenter.cuts[c];
                for (int y = 0; y < image.Dim(1); y++)
                {
                    for (int i = -1; i <= 1; i++)
                    {
                        int x = cut[y].X;
                        if (x < 1 || x >= w - 1) continue;
                        seg[x + i, y] = 0;
                    }
                }
            }
            ImgLabels.label_components(ref seg);
            // dshowr(seg,"YY"); dwait();
            segmentation.Copy(image);
            ImgLabels.propagate_labels_to(ref segmentation, seg);

            SegmRoutine.line_segmentation_merge_small_components(ref segmentation, small_merge_threshold);
            SegmRoutine.line_segmentation_sort_x(segmentation);

            SegmRoutine.make_line_segmentation_white(segmentation);
            // set_line_number(segmentation, 1);
            Logger.Default.Image("resulting segmentation", segmentation);
        }
Example #17
0
        public override void Charseg(ref Intarray result_segmentation, Bytearray orig_image)
        {
            Logger.Default.Image("segmenting", orig_image);

            int PADDING = 3;
            OcrRoutine.optional_check_background_is_lighter(orig_image);
            Bytearray image = new Bytearray();
            Narray<byte> bimage = image;
            image.Copy(orig_image);
            OcrRoutine.binarize_simple(image);
            OcrRoutine.Invert(image);
            ImgOps.pad_by(ref bimage, PADDING, PADDING);
            // pass image to segmenter
            segmenter.SetImage(image);
            // find all cuts in the image
            segmenter.FindAllCuts();
            // choose the best of all cuts
            segmenter.FindBestCuts();

            Intarray segmentation = new Intarray();
            segmentation.Resize(image.Dim(0), image.Dim(1));
            for (int i = 0; i < image.Dim(0); i++)
                for (int j = 0; j < image.Dim(1); j++)
                    segmentation[i, j] = image[i, j] > 0 ? 1 : 0;

            for (int r = 0; r < segmenter.bestcuts.Length(); r++)
            {
                int c = segmenter.bestcuts[r];
                Narray<Point> cut = segmenter.cuts[c];
                for (int y = 0; y < image.Dim(1); y++)
                {
                    for (int x = cut[y].X; x < image.Dim(0); x++)
                    {
                        if (segmentation[x, y] > 0) segmentation[x, y]++;
                    }
                }
            }
            ImgOps.extract_subimage(result_segmentation, segmentation, PADDING, PADDING,
                             segmentation.Dim(0) - PADDING, segmentation.Dim(1) - PADDING);

            if (small_merge_threshold > 0)
            {
                SegmRoutine.line_segmentation_merge_small_components(ref result_segmentation, small_merge_threshold);
                SegmRoutine.line_segmentation_sort_x(result_segmentation);
            }

            SegmRoutine.make_line_segmentation_white(result_segmentation);
            // set_line_number(segmentation, 1);
            Logger.Default.Image("resulting segmentation", result_segmentation);
        }
Example #18
0
        /// <summary>
        /// Train on a text line, given a segmentation.
        /// <remarks>This is analogous to addTrainingLine(bytearray,nustring) except that
        /// it takes the "ground truth" line segmentation.</remarks>
        /// </summary>
        public override bool AddTrainingLine(Intarray cseg, Bytearray image_grayscale, string tr)
        {
            Bytearray image = new Bytearray();
            image.Copy(image_grayscale);
            if (String.IsNullOrEmpty(tr))
            {
                Global.Debugf("error", "input transcript is empty");
                return false;
            }
            if (image.Dim(0) < PGeti("minheight"))
            {
                Global.Debugf("error", "input line too small ({0} x {1})", image.Dim(0), image.Dim(1));
                return false;
            }
            if (image.Dim(1) > PGeti("maxheight"))
            {
                Global.Debugf("error", "input line too high ({0} x {1})", image.Dim(0), image.Dim(1));
                return false;
            }
            if (image.Dim(1) * 1.0 / image.Dim(0) > PGetf("maxaspect"))
            {
                Global.Debugf("warn", "input line has bad aspect ratio ({0} x {1})", image.Dim(0), image.Dim(1));
                return false;
            }
            CHECK_ARG(image.Dim(0) == cseg.Dim(0) && image.Dim(1) == cseg.Dim(1),
                "image.Dim(0) == cseg.Dim(0) && image.Dim(1) == cseg.Dim(1)");

            bool use_reject = PGetb("use_reject") && !DisableJunk;

            // check and set the transcript
            transcript = tr;
            SetLine(image_grayscale);
            if (PGeti("invert") > 0)
                NarrayUtil.Sub(NarrayUtil.Max(image), image);
            for (int i = 0; i < transcript.Length; i++)
                CHECK_ARG((int)transcript[i] >= 32, "(int)transcript[i] >= 32");

            // compute correspondences between actual segmentation and
            // ground truth segmentation
            Narray<Intarray> segments = new Narray<Intarray>();
            GrouperRoutine.segmentation_correspondences(segments, segmentation, cseg);

            // now iterate through all the hypothesis segments and
            // train the classifier with them
            int total = 0;
            int junk = 0;
            for (int i = 0; i < grouper.Object.Length(); i++)
            {
                Intarray segs = new Intarray();
                grouper.Object.GetSegments(segs, i);

                // see whether this is a ground truth segment
                int match = -1;
                for (int j = 0; j < segments.Length(); j++)
                {
                    if (GrouperRoutine.Equals(segments[j], segs))
                    {
                        match = j;
                        break;
                    }
                }
                match -= 1;         // segments are numbered starting at 1
                int c = reject_class;
                if (match >= 0)
                {
                    if (match >= transcript.Length)
                    {
                        Global.Debugf("error", "mismatch between transcript and cseg: {0}", transcript);
                        continue;
                    }
                    else
                    {
                        c = (int)transcript[match];
                        Global.Debugf("debugmismatch", "index {0} position {1} char {2} [{3}]", i, match, (char)c, c);
                    }
                }

                if (c == reject_class)
                    junk++;

                // extract the character and add it to the classifier
                Rect b;
                Bytearray mask = new Bytearray();
                grouper.Object.GetMask(out b, ref mask, i, 0);
                Bytearray cv = new Bytearray();
                grouper.Object.ExtractWithMask(cv, mask, image, i, 0);
                Floatarray v = new Floatarray();
                v.Copy(cv);
                v /= 255.0;
                Global.Debugf("cdim", "character dimensions ({0},{1})", v.Dim(0), v.Dim(1));
                total++;
                if (use_reject)
                {
                    classifier.Object.XAdd(v, c);
                }
                else
                {
                    if (c != reject_class)
                        classifier.Object.XAdd(v, c);
                }
                if (c != reject_class)
                    IncClass(c);
                ntrained++;
            }
            Global.Debugf("detail", "AddTrainingLine trained {0} chars, {1} junk", total - junk, junk);
            return true;
        }
Example #19
0
        public override void Binarize(Bytearray bin_image, Bytearray gray_image)
        {
            w     = PGeti("w");
            k     = (float)PGetf("k");
            whalf = w >> 1;
            // fprintf(stderr,"[sauvola %g %d]\n",k,w);
            if (k < 0.001 || k > 0.999)
            {
                throw new Exception("Binarize: CHECK_ARG(k>=0.001 && k<=0.999)");
            }
            if (w == 0 || k >= 1000)
            {
                throw new Exception("Binarize: CHECK_ARG(w>0 && k<1000)");
            }
            if (bin_image.Length1d() != gray_image.Length1d())
            {
                bin_image.MakeLike(gray_image);
            }

            if (NarrayUtil.contains_only(gray_image, (byte)0, (byte)255))
            {
                bin_image.Copy(gray_image);
                return;
            }

            int image_width  = gray_image.Dim(0);
            int image_height = gray_image.Dim(1);

            whalf = w >> 1;

            // Calculate the integral image, and integral of the squared image
            Narray <long> integral_image = new Narray <long>(), rowsum_image = new Narray <long>();
            Narray <long> integral_sqimg = new Narray <long>(), rowsum_sqimg = new Narray <long>();

            integral_image.MakeLike(gray_image);
            rowsum_image.MakeLike(gray_image);
            integral_sqimg.MakeLike(gray_image);
            rowsum_sqimg.MakeLike(gray_image);
            int    xmin, ymin, xmax, ymax;
            double diagsum, idiagsum, diff, sqdiagsum, sqidiagsum, sqdiff, area;
            double mean, std, threshold;

            for (int j = 0; j < image_height; j++)
            {
                rowsum_image[0, j] = gray_image[0, j];
                rowsum_sqimg[0, j] = gray_image[0, j] * gray_image[0, j];
            }
            for (int i = 1; i < image_width; i++)
            {
                for (int j = 0; j < image_height; j++)
                {
                    rowsum_image[i, j] = rowsum_image[i - 1, j] + gray_image[i, j];
                    rowsum_sqimg[i, j] = rowsum_sqimg[i - 1, j] + gray_image[i, j] * gray_image[i, j];
                }
            }

            for (int i = 0; i < image_width; i++)
            {
                integral_image[i, 0] = rowsum_image[i, 0];
                integral_sqimg[i, 0] = rowsum_sqimg[i, 0];
            }
            for (int i = 0; i < image_width; i++)
            {
                for (int j = 1; j < image_height; j++)
                {
                    integral_image[i, j] = integral_image[i, j - 1] + rowsum_image[i, j];
                    integral_sqimg[i, j] = integral_sqimg[i, j - 1] + rowsum_sqimg[i, j];
                }
            }

            //Calculate the mean and standard deviation using the integral image

            for (int i = 0; i < image_width; i++)
            {
                for (int j = 0; j < image_height; j++)
                {
                    xmin = Math.Max(0, i - whalf);
                    ymin = Math.Max(0, j - whalf);
                    xmax = Math.Min(image_width - 1, i + whalf);
                    ymax = Math.Min(image_height - 1, j + whalf);
                    area = (xmax - xmin + 1) * (ymax - ymin + 1);
                    // area can't be 0 here
                    // proof (assuming whalf >= 0):
                    // we'll prove that (xmax-xmin+1) > 0,
                    // (ymax-ymin+1) is analogous
                    // It's the same as to prove: xmax >= xmin
                    // image_width - 1 >= 0         since image_width > i >= 0
                    // i + whalf >= 0               since i >= 0, whalf >= 0
                    // i + whalf >= i - whalf       since whalf >= 0
                    // image_width - 1 >= i - whalf since image_width > i
                    // --IM
                    if (area <= 0)
                    {
                        throw new Exception("Binarize: area can't be 0 here");
                    }
                    if (xmin == 0 && ymin == 0)
                    { // Point at origin
                        diff   = integral_image[xmax, ymax];
                        sqdiff = integral_sqimg[xmax, ymax];
                    }
                    else if (xmin == 0 && ymin > 0)
                    { // first column
                        diff   = integral_image[xmax, ymax] - integral_image[xmax, ymin - 1];
                        sqdiff = integral_sqimg[xmax, ymax] - integral_sqimg[xmax, ymin - 1];
                    }
                    else if (xmin > 0 && ymin == 0)
                    { // first row
                        diff   = integral_image[xmax, ymax] - integral_image[xmin - 1, ymax];
                        sqdiff = integral_sqimg[xmax, ymax] - integral_sqimg[xmin - 1, ymax];
                    }
                    else
                    { // rest of the image
                        diagsum    = integral_image[xmax, ymax] + integral_image[xmin - 1, ymin - 1];
                        idiagsum   = integral_image[xmax, ymin - 1] + integral_image[xmin - 1, ymax];
                        diff       = diagsum - idiagsum;
                        sqdiagsum  = integral_sqimg[xmax, ymax] + integral_sqimg[xmin - 1, ymin - 1];
                        sqidiagsum = integral_sqimg[xmax, ymin - 1] + integral_sqimg[xmin - 1, ymax];
                        sqdiff     = sqdiagsum - sqidiagsum;
                    }

                    mean      = diff / area;
                    std       = Math.Sqrt((sqdiff - diff * diff / area) / (area - 1));
                    threshold = mean * (1 + k * ((std / 128) - 1));
                    if (gray_image[i, j] < threshold)
                    {
                        bin_image[i, j] = 0;
                    }
                    else
                    {
                        bin_image[i, j] = (byte)(MAXVAL - 1);
                    }
                }
            }
            if (PGeti("debug_binarize") > 0)
            {
                ImgIo.write_image_gray("debug_binarize.png", bin_image);
            }
        }
Example #20
0
        public override void Charseg(ref Intarray segmentation, Bytearray inraw)
        {
            setParams();
            //Logger.Default.Image("segmenting", inraw);

            int PADDING = 3;
            OcrRoutine.optional_check_background_is_lighter(inraw);
            Bytearray image = new Bytearray();
            image.Copy(inraw);
            OcrRoutine.binarize_simple(image);
            OcrRoutine.Invert(image);

            SetImage(image);
            FindAllCuts();
            FindBestCuts();

            Intarray seg = new Intarray();
            seg.MakeLike(image);
            seg.Fill(255);

            for (int r = 0; r < bestcuts.Length(); r++)
            {
                int w = seg.Dim(0);
                int c = bestcuts[r];
                Narray<Point> cut = cuts[c];
                for (int y = 0; y < image.Dim(1); y++)
                {
                    for (int i = -1; i <= 1; i++)
                    {
                        int x = cut[y].X;
                        if (x < 1 || x >= w - 1) continue;
                        seg[x + i, y] = 0;
                    }
                }
            }
            ImgLabels.label_components(ref seg);
            // dshowr(seg,"YY"); dwait();
            segmentation.Copy(image);

            for (int i = 0; i < seg.Length1d(); i++)
                if (segmentation.At1d(i) == 0) seg.Put1d(i, 0);

            ImgLabels.propagate_labels_to(ref segmentation, seg);

            if (PGeti("component_segmentation") > 0)
            {
                Intarray ccseg = new Intarray();
                ccseg.Copy(image);
                ImgLabels.label_components(ref ccseg);
                SegmRoutine.combine_segmentations(ref segmentation, ccseg);
                if (PGeti("fix_diacritics") > 0)
                {
                    SegmRoutine.fix_diacritics(segmentation);
                }
            }
            #if false
            SegmRoutine.line_segmentation_merge_small_components(ref segmentation, small_merge_threshold);
            SegmRoutine.line_segmentation_sort_x(segmentation);
            #endif

            SegmRoutine.make_line_segmentation_white(segmentation);
            // set_line_number(segmentation, 1);
            //Logger.Default.Image("resulting segmentation", segmentation);
        }
Example #21
0
 public void SetImage(Bytearray image_)
 {
     Bytearray image = new Bytearray();
     //image = image_;
     image.Copy(image_);
     dimage.Copy(image);
     if (PGeti("fill_holes") > 0)
     {
         Bytearray holes = new Bytearray();
         SegmRoutine.extract_holes(ref holes, image);
         for (int i = 0; i < image.Length(); i++)
             if (holes.At1d(i) > 0) image.Put1d(i, 255);
     }
     int w = image.Dim(0), h = image.Dim(1);
     wimage.Resize(w, h);
     wimage.Fill(0);
     float s1 = 0.0f, sy = 0.0f;
     for (int i = 1; i < w; i++)
         for (int j = 0; j < h; j++)
         {
             if (image[i, j] > 0) { s1++; sy += j; }
             if (image[i, j] > 0) wimage[i, j] = inside_weight;
             else wimage[i, j] = outside_weight;
         }
     if(s1==0) where = image.Dim(1)/2;
     else where = (int)(sy / s1);
     for (int i = 0; i < dimage.Dim(0); i++) dimage[i, where] = 0x008000;
 }
Example #22
0
        public override void Binarize(Bytearray bin_image, Bytearray gray_image)
        {
            if(bin_image.Length1d() != gray_image.Length1d())
                bin_image.MakeLike(gray_image);

            if(NarrayUtil.contains_only(gray_image, (byte)0, (byte)255))
            {
                bin_image.Copy(gray_image);
                return;
            }

            int image_width  = gray_image.Dim(0);
            int image_height = gray_image.Dim(1);
            int[]    hist = new int[MAXVAL];
            double[] pdf = new double[MAXVAL]; //probability distribution
            double[] cdf = new double[MAXVAL]; //cumulative probability distribution
            double[] myu = new double[MAXVAL];   // mean value for separation
            double max_sigma;
            double[] sigma = new double[MAXVAL]; // inter-class variance

            /* Histogram generation */
            for(int i=0; i<MAXVAL; i++){
                hist[i] = 0;
            }
            for(int x=0; x<image_width; x++){
                for(int y=0; y<image_height; y++){
                    hist[gray_image[x,y]]++;
                }
            }

            /* calculation of probability density */
            for(int i=0; i<MAXVAL; i++){
                pdf[i] = (double)hist[i] / (image_width * image_height);
            }

            /* cdf & myu generation */
            cdf[0] = pdf[0];
            myu[0] = 0.0;       /* 0.0 times prob[0] equals zero */
            for(int i=1; i<MAXVAL; i++){
                cdf[i] = cdf[i-1] + pdf[i];
                myu[i] = myu[i-1] + i*pdf[i];
            }

            /* sigma maximization
               sigma stands for inter-class variance
               and determines optimal threshold value */
            int threshold = 0;
            max_sigma = 0.0;
            for(int i=0; i<MAXVAL-1; i++){
                if(cdf[i] != 0.0 && cdf[i] != 1.0){
                    double p1p2 = cdf[i]*(1.0 - cdf[i]);
                    double mu1mu2diff = myu[MAXVAL-1]*cdf[i]-myu[i];
                    sigma[i] = mu1mu2diff * mu1mu2diff / p1p2;
                }
                else
                    sigma[i] = 0.0;
                if(sigma[i] > max_sigma){
                    max_sigma = sigma[i];
                    threshold = i;
                }
            }

            for(int x=0; x<image_width; x++){
                for(int y=0; y<image_height; y++){
                     if (gray_image[x,y] > threshold)
                        bin_image[x,y] = (byte)(MAXVAL-1);
                    else
                        bin_image[x,y] = 0;
                }
            }

            if(PGeti("debug_otsu") > 0) {
                Logger.Default.Format("Otsu threshold value = {0}\n", threshold);
                //ImgIo.write_image_gray("debug_otsu.png", bin_image);
            }
        }
Example #23
0
 public void Image(string description, Bytearray a, float zoom = 100f)
 {
     if (verbose)
     {
         writer.WriteLine(String.Format("image {0} w:{1}, h:{2}", description, a.Dim(0), a.Dim(1)));
     }
 }
Example #24
0
 public void Image(string description, Bytearray a, float zoom = 100f)
 {
     if (verbose)
         writer.WriteLine(String.Format("image {0} w:{1}, h:{2}", description, a.Dim(0), a.Dim(1)));
 }
Example #25
0
        public static void Thin(ref Bytearray uci)
        {
            int w = uci.Dim(0) - 1;
            int h = uci.Dim(1) - 1;

            for (int i = 0, n = uci.Length1d(); i < n; i++)
            {
                if (uci.At1d(i) > 0)
                {
                    uci.Put1d(i, ON);
                }
                else
                {
                    uci.Put1d(i, OFF);
                }
            }

            bool flag;

            do
            {
                flag = false;
                for (int j = 0; j < 8; j += 2)
                {
                    for (int x = 1; x < w; x++)
                    {
                        for (int y = 1; y < h; y++)
                        {
                            if (uci[x, y] != ON)
                            {
                                continue;
                            }
                            if (uci[x + nx[j], y + ny[j]] != OFF)
                            {
                                continue;
                            }
                            int b = 0;
                            for (int i = 7; i >= 0; i--)
                            {
                                b <<= 1;
                                b  |= (uci[x + nx[i], y + ny[i]] != OFF ? 1 : 0);
                            }
                            if (ttable[b] > 0)
                            {
                                uci[x, y] = SKEL;
                            }
                            else
                            {
                                uci[x, y] = DEL;
                                flag      = true;
                            }
                        }
                    }
                    if (!flag)
                    {
                        continue;
                    }
                    for (int x = 1; x < w; x++)
                    {
                        for (int y = 1; y < h; y++)
                        {
                            if (uci[x, y] == DEL)
                            {
                                uci[x, y] = OFF;
                            }
                        }
                    }
                }
            } while (flag);

            for (int i = 0, n = uci.Length1d(); i < n; i++)
            {
                if (uci.At1d(i) == SKEL)
                {
                    uci.Put1d(i, 255);
                }
                else
                {
                    uci.Put1d(i, 0);
                }
            }
        }
Example #26
0
        /// <summary>
        /// Train on a text line, given a segmentation.
        /// <remarks>This is analogous to addTrainingLine(bytearray,nustring) except that
        /// it takes the "ground truth" line segmentation.</remarks>
        /// </summary>
        public override bool AddTrainingLine(Intarray cseg, Bytearray image_grayscale, string tr)
        {
            Bytearray image = new Bytearray();

            image.Copy(image_grayscale);
            if (String.IsNullOrEmpty(tr))
            {
                Global.Debugf("error", "input transcript is empty");
                return(false);
            }
            if (image.Dim(0) < PGeti("minheight"))
            {
                Global.Debugf("error", "input line too small ({0} x {1})", image.Dim(0), image.Dim(1));
                return(false);
            }
            if (image.Dim(1) > PGeti("maxheight"))
            {
                Global.Debugf("error", "input line too high ({0} x {1})", image.Dim(0), image.Dim(1));
                return(false);
            }
            if (image.Dim(1) * 1.0 / image.Dim(0) > PGetf("maxaspect"))
            {
                Global.Debugf("warn", "input line has bad aspect ratio ({0} x {1})", image.Dim(0), image.Dim(1));
                return(false);
            }
            CHECK_ARG(image.Dim(0) == cseg.Dim(0) && image.Dim(1) == cseg.Dim(1),
                      "image.Dim(0) == cseg.Dim(0) && image.Dim(1) == cseg.Dim(1)");

            bool use_reject = PGetb("use_reject") && !DisableJunk;

            // check and set the transcript
            transcript = tr;
            SetLine(image_grayscale);
            if (PGeti("invert") > 0)
            {
                NarrayUtil.Sub(NarrayUtil.Max(image), image);
            }
            for (int i = 0; i < transcript.Length; i++)
            {
                CHECK_ARG((int)transcript[i] >= 32, "(int)transcript[i] >= 32");
            }

            // compute correspondences between actual segmentation and
            // ground truth segmentation
            Narray <Intarray> segments = new Narray <Intarray>();

            GrouperRoutine.segmentation_correspondences(segments, segmentation, cseg);

            // now iterate through all the hypothesis segments and
            // train the classifier with them
            int total = 0;
            int junk  = 0;

            for (int i = 0; i < grouper.Object.Length(); i++)
            {
                Intarray segs = new Intarray();
                grouper.Object.GetSegments(segs, i);

                // see whether this is a ground truth segment
                int match = -1;
                for (int j = 0; j < segments.Length(); j++)
                {
                    if (GrouperRoutine.Equals(segments[j], segs))
                    {
                        match = j;
                        break;
                    }
                }
                match -= 1;         // segments are numbered starting at 1
                int c = reject_class;
                if (match >= 0)
                {
                    if (match >= transcript.Length)
                    {
                        Global.Debugf("error", "mismatch between transcript and cseg: {0}", transcript);
                        continue;
                    }
                    else
                    {
                        c = (int)transcript[match];
                        Global.Debugf("debugmismatch", "index {0} position {1} char {2} [{3}]", i, match, (char)c, c);
                    }
                }

                if (c == reject_class)
                {
                    junk++;
                }

                // extract the character and add it to the classifier
                Rect      b;
                Bytearray mask = new Bytearray();
                grouper.Object.GetMask(out b, ref mask, i, 0);
                Bytearray cv = new Bytearray();
                grouper.Object.ExtractWithMask(cv, mask, image, i, 0);
                Floatarray v = new Floatarray();
                v.Copy(cv);
                v /= 255.0;
                Global.Debugf("cdim", "character dimensions ({0},{1})", v.Dim(0), v.Dim(1));
                total++;
                if (use_reject)
                {
                    classifier.Object.XAdd(v, c);
                }
                else
                {
                    if (c != reject_class)
                    {
                        classifier.Object.XAdd(v, c);
                    }
                }
                if (c != reject_class)
                {
                    IncClass(c);
                }
                ntrained++;
            }
            Global.Debugf("detail", "AddTrainingLine trained {0} chars, {1} junk", total - junk, junk);
            return(true);
        }
Example #27
0
        /// <summary>
        /// This is a weird, optional method that exposes character segmentation
        /// for those line recognizers that have it segmentation contains colored pixels,
        /// and a transition in the transducer of the form * --- 1/eps --> * --- 2/a --> *
        /// means that pixels with color 1 and 2 together form the letter "a"
        /// </summary>
        public override double RecognizeLine(Intarray segmentation_, IGenericFst result, Bytearray image_)
        {
            double rate = 0.0;

            CHECK_ARG(image_.Dim(1) < PGeti("maxheight"),
                      String.Format("input line too high ({0} x {1})", image_.Dim(0), image_.Dim(1)));
            CHECK_ARG(image_.Dim(1) * 1.0 / image_.Dim(0) < PGetf("maxaspect"),
                      String.Format("input line has bad aspect ratio ({0} x {1})", image_.Dim(0), image_.Dim(1)));
            bool use_reject = PGetb("use_reject") && !DisableJunk;
            //Console.WriteLine("IMG: imin:{0} imax:{1}", NarrayUtil.ArgMin(image_), NarrayUtil.ArgMax(image_));
            Bytearray image = new Bytearray();

            image.Copy(image_);

            SetLine(image_);

            if (PGeti("invert") > 0)
            {
                NarrayUtil.Sub(NarrayUtil.Max(image), image);
            }
            segmentation_.Copy(segmentation);
            Bytearray    available   = new Bytearray();
            Floatarray   cp          = new Floatarray();
            Floatarray   ccosts      = new Floatarray();
            Floatarray   props       = new Floatarray();
            OutputVector p           = new OutputVector();
            int          ncomponents = grouper.Object.Length();
            int          minclass    = PGeti("minclass");
            float        minprob     = PGetf("minprob");
            float        space_yes   = PGetf("space_yes");
            float        space_no    = PGetf("space_no");
            float        maxcost     = PGetf("maxcost");

            // compute priors if possible; fall back on
            // using no priors if no counts are available
            Floatarray priors     = new Floatarray();
            bool       use_priors = PGeti("use_priors") > 0;

            if (use_priors)
            {
                if (counts.Length() > 0)
                {
                    priors.Copy(counts);
                    priors /= NarrayUtil.Sum(priors);
                }
                else
                {
                    if (!counts_warned)
                    {
                        Global.Debugf("warn", "use_priors specified but priors unavailable (old model)");
                    }
                    use_priors    = false;
                    counts_warned = true;
                }
            }

            EstimateSpaceSize();

            for (int i = 0; i < ncomponents; i++)
            {
                Rect      b;
                Bytearray mask = new Bytearray();
                grouper.Object.GetMask(out b, ref mask, i, 0);
                Bytearray cv = new Bytearray();
                grouper.Object.ExtractWithMask(cv, mask, image, i, 0);
                //ImgIo.write_image_gray("extrmask_image.png", cv);
                Floatarray v = new Floatarray();
                v.Copy(cv);
                v /= 255.0f;
                float ccost = classifier.Object.XOutputs(p, v);
                if (use_reject && classifier.Object.HigherOutputIsBetter)
                {
                    ccost = 0;
                    float total = p.Sum();
                    if (total > 1e-11f)
                    {
                        //p /= total;
                    }
                    else
                    {
                        p.Values.Fill(0.0f);
                    }
                }
                int count = 0;

                Global.Debugf("dcost", "output {0}", p.Keys.Length());
                for (int index = 0; index < p.Keys.Length(); index++)
                {
                    int j = p.Keys[index];
                    if (j < minclass)
                    {
                        continue;
                    }
                    if (j == reject_class)
                    {
                        continue;
                    }
                    float value = p.Values[index];
                    if (value <= 0.0f)
                    {
                        continue;
                    }
                    if (value < minprob)
                    {
                        continue;
                    }
                    float pcost = classifier.Object.HigherOutputIsBetter ? (float)-Math.Log(value) : value;
                    Global.Debugf("dcost", "{0} {1} {2}", j, pcost + ccost, (j > 32 ? (char)j : '_'));
                    float total_cost = pcost + ccost;
                    if (total_cost < maxcost)
                    {
                        if (use_priors)
                        {
                            total_cost -= (float)-Math.Log(priors[j]);
                        }
                        grouper.Object.SetClass(i, j, total_cost);
                        count++;
                    }
                }
                Global.Debugf("dcost", "");

                if (count == 0)
                {
                    float xheight = 10.0f;
                    if (b.Height() < xheight / 2 && b.Width() < xheight / 2)
                    {
                        grouper.Object.SetClass(i, (int)'~', high_cost / 2);
                    }
                    else
                    {
                        grouper.Object.SetClass(i, (int)'#', (b.Width() / xheight) * high_cost);
                    }
                }
                if (grouper.Object.PixelSpace(i) > space_threshold)
                {
                    Global.Debugf("spaces", "space {0}", grouper.Object.PixelSpace(i));
                    grouper.Object.SetSpaceCost(i, space_yes, space_no);
                }
            }

            grouper.Object.GetLattice(result);
            return(rate);
        }
Example #28
0
        /// <summary>
        /// This is a weird, optional method that exposes character segmentation
        /// for those line recognizers that have it segmentation contains colored pixels,
        /// and a transition in the transducer of the form * --- 1/eps --> * --- 2/a --> *
        /// means that pixels with color 1 and 2 together form the letter "a"
        /// </summary>
        public override double RecognizeLine(Intarray segmentation_, IGenericFst result, Bytearray image_)
        {
            double rate = 0.0;
            CHECK_ARG(image_.Dim(1) < PGeti("maxheight"),
                String.Format("input line too high ({0} x {1})", image_.Dim(0), image_.Dim(1)));
            CHECK_ARG(image_.Dim(1) * 1.0 / image_.Dim(0) < PGetf("maxaspect"),
                String.Format("input line has bad aspect ratio ({0} x {1})", image_.Dim(0), image_.Dim(1)));
            bool use_reject = PGetb("use_reject") && !DisableJunk;
            //Console.WriteLine("IMG: imin:{0} imax:{1}", NarrayUtil.ArgMin(image_), NarrayUtil.ArgMax(image_));
            Bytearray image = new Bytearray();
            image.Copy(image_);

            SetLine(image_);

            if (PGeti("invert") > 0)
                NarrayUtil.Sub(NarrayUtil.Max(image), image);
            segmentation_.Copy(segmentation);
            Bytearray available = new Bytearray();
            Floatarray cp = new Floatarray();
            Floatarray ccosts = new Floatarray();
            Floatarray props = new Floatarray();
            OutputVector p = new OutputVector();
            int ncomponents = grouper.Object.Length();
            int minclass = PGeti("minclass");
            float minprob = PGetf("minprob");
            float space_yes = PGetf("space_yes");
            float space_no = PGetf("space_no");
            float maxcost = PGetf("maxcost");

            // compute priors if possible; fall back on
            // using no priors if no counts are available
            Floatarray priors = new Floatarray();
            bool use_priors = PGeti("use_priors") > 0;
            if (use_priors)
            {
                if (counts.Length() > 0)
                {
                    priors.Copy(counts);
                    priors /= NarrayUtil.Sum(priors);
                }
                else
                {
                    if (!counts_warned)
                        Global.Debugf("warn", "use_priors specified but priors unavailable (old model)");
                    use_priors = false;
                    counts_warned = true;
                }
            }

            EstimateSpaceSize();

            for (int i = 0; i < ncomponents; i++)
            {
                Rect b;
                Bytearray mask = new Bytearray();
                grouper.Object.GetMask(out b, ref mask, i, 0);
                Bytearray cv = new Bytearray();
                grouper.Object.ExtractWithMask(cv, mask, image, i, 0);
                //ImgIo.write_image_gray("extrmask_image.png", cv);
                Floatarray v = new Floatarray();
                v.Copy(cv);
                v /= 255.0f;
                float ccost = classifier.Object.XOutputs(p, v);
                if (use_reject && classifier.Object.HigherOutputIsBetter)
                {
                    ccost = 0;
                    float total = p.Sum();
                    if (total > 1e-11f)
                    {
                        //p /= total;
                    }
                    else
                        p.Values.Fill(0.0f);
                }
                int count = 0;

                Global.Debugf("dcost", "output {0}", p.Keys.Length());
                for (int index = 0; index < p.Keys.Length(); index++)
                {
                    int j = p.Keys[index];
                    if (j < minclass) continue;
                    if (j == reject_class) continue;
                    float value = p.Values[index];
                    if (value <= 0.0f) continue;
                    if (value < minprob) continue;
                    float pcost = classifier.Object.HigherOutputIsBetter ? (float)-Math.Log(value) : value;
                    Global.Debugf("dcost", "{0} {1} {2}", j, pcost + ccost, (j > 32 ? (char)j : '_'));
                    float total_cost = pcost + ccost;
                    if (total_cost < maxcost)
                    {
                        if (use_priors)
                        {
                            total_cost -= (float)-Math.Log(priors[j]);
                        }
                        grouper.Object.SetClass(i, j, total_cost);
                        count++;
                    }
                }
                Global.Debugf("dcost", "");

                if (count == 0)
                {
                    float xheight = 10.0f;
                    if (b.Height() < xheight / 2 && b.Width() < xheight / 2)
                    {
                        grouper.Object.SetClass(i, (int)'~', high_cost / 2);
                    }
                    else
                    {
                        grouper.Object.SetClass(i, (int)'#', (b.Width() / xheight) * high_cost);
                    }
                }
                if (grouper.Object.PixelSpace(i) > space_threshold)
                {
                    Global.Debugf("spaces", "space {0}", grouper.Object.PixelSpace(i));
                    grouper.Object.SetSpaceCost(i, space_yes, space_no);
                }
            }

            grouper.Object.GetLattice(result);
            return rate;
        }
Example #29
0
        public void SetLine(Bytearray image)
        {
            CHECK_ARG(image.Dim(1) < PGeti("maxheight"), "image.Dim(1) < PGeti(\"maxheight\")");

            // run the segmenter
            /*Narray<Rect> bboxes = new Narray<Rect>();
            Intarray iar = new Intarray();
            iar.Copy(image);
            ImgLabels.bounding_boxes(ref bboxes, iar);*/
            //Console.WriteLine("IMG SETLINE: imin:{0} imax:{1}", NarrayUtil.ArgMin(iar), NarrayUtil.ArgMax(iar));
            //Console.WriteLine("INDEX_BLACK:{0} {1} {2} {3}", bboxes[0].x0, bboxes[0].y0, bboxes[0].x1, bboxes[0].y1);
            //ImgIo.write_image_gray("image.png", image);
            OcrRoutine.binarize_simple(binarized, image);
            segmenter.Object.Charseg(ref segmentation, binarized);

            /*Intarray segm = new Intarray();
            segm.Copy(segmentation);
            ImgLabels.simple_recolor(segm);
            ImgIo.write_image_packed("segm_image.png", segm);*/

            //NarrayUtil.Sub(255, binarized);

            SegmRoutine.make_line_segmentation_black(segmentation);
            SegmRoutine.remove_small_components(segmentation, 3, 3);       // i add this line
            ImgLabels.renumber_labels(segmentation, 1);

            // set up the grouper
            grouper.Object.SetSegmentation(segmentation);
        }
Example #30
0
        public List <List <float> > SpaceCosts(List <Candidate> candidates, Bytearray image)
        {
            /*
             *  Given a list of character recognition candidates and their
             *  classifications, and an image of the corresponding text line,
             *  compute a list of pairs of costs for putting/not putting a space
             *  after each of the candidate characters.
             *
             *  The basic idea behind this simple algorithm is to try larger
             *  and larger horizontal closing operations until most of the components
             *  start having a "wide" aspect ratio; that's when characters have merged
             *  into words.  The remaining whitespace should be spaces.
             *
             *  This is just a simple stopgap measure; it will be replaced with
             *  trainable space modeling.
             */
            int w = image.Dim(0);
            int h = image.Dim(1);

            Bytearray closed = new Bytearray();
            int       r;

            for (r = 0; r < maxrange; r++)
            {
                if (r > 0)
                {
                    closed.Copy(image);
                    Morph.binary_close_circle(closed, r);
                }
                else
                {
                    closed.Copy(image);
                }
                Intarray labeled = new Intarray();
                labeled.Copy(closed);
                ImgLabels.label_components(ref labeled);
                Narray <Rect> rects = new Narray <Rect>();
                ImgLabels.bounding_boxes(ref rects, labeled);
                Floatarray aspects = new Floatarray();
                for (int i = 0; i < rects.Length(); i++)
                {
                    Rect  rect   = rects[i];
                    float aspect = rect.Aspect();
                    aspects.Push(aspect);
                }
                float maspect = NarrayUtil.Median(aspects);
                if (maspect >= this.aspect_threshold)
                {
                    break;
                }
            }

            // close with a little bit of extra space
            closed.Copy(image);
            Morph.binary_close_circle(closed, r + 1);

            // compute the remaining aps
            //Morph.binary_dilate_circle();

            // every character box that ends near a cap gets a space appended


            return(null);
        }
Example #31
0
        public override void Charseg(ref Intarray segmentation, Bytearray inraw)
        {
            setParams();
            //Logger.Default.Image("segmenting", inraw);

            int PADDING = 3;

            OcrRoutine.optional_check_background_is_lighter(inraw);
            Bytearray image = new Bytearray();

            image.Copy(inraw);
            OcrRoutine.binarize_simple(image);
            OcrRoutine.Invert(image);

            SetImage(image);
            FindAllCuts();
            FindBestCuts();

            Intarray seg = new Intarray();

            seg.MakeLike(image);
            seg.Fill(255);

            for (int r = 0; r < bestcuts.Length(); r++)
            {
                int            w   = seg.Dim(0);
                int            c   = bestcuts[r];
                Narray <Point> cut = cuts[c];
                for (int y = 0; y < image.Dim(1); y++)
                {
                    for (int i = -1; i <= 1; i++)
                    {
                        int x = cut[y].X;
                        if (x < 1 || x >= w - 1)
                        {
                            continue;
                        }
                        seg[x + i, y] = 0;
                    }
                }
            }
            ImgLabels.label_components(ref seg);
            // dshowr(seg,"YY"); dwait();
            segmentation.Copy(image);

            for (int i = 0; i < seg.Length1d(); i++)
            {
                if (segmentation.At1d(i) == 0)
                {
                    seg.Put1d(i, 0);
                }
            }

            ImgLabels.propagate_labels_to(ref segmentation, seg);

            if (PGeti("component_segmentation") > 0)
            {
                Intarray ccseg = new Intarray();
                ccseg.Copy(image);
                ImgLabels.label_components(ref ccseg);
                SegmRoutine.combine_segmentations(ref segmentation, ccseg);
                if (PGeti("fix_diacritics") > 0)
                {
                    SegmRoutine.fix_diacritics(segmentation);
                }
            }
#if false
            SegmRoutine.line_segmentation_merge_small_components(ref segmentation, small_merge_threshold);
            SegmRoutine.line_segmentation_sort_x(segmentation);
#endif

            SegmRoutine.make_line_segmentation_white(segmentation);
            // set_line_number(segmentation, 1);
            //Logger.Default.Image("resulting segmentation", segmentation);
        }
Example #32
0
        public override void Binarize(Bytearray bin_image, Bytearray gray_image)
        {
            if (bin_image.Length1d() != gray_image.Length1d())
            {
                bin_image.MakeLike(gray_image);
            }

            if (NarrayUtil.contains_only(gray_image, (byte)0, (byte)255))
            {
                bin_image.Copy(gray_image);
                return;
            }

            int image_width  = gray_image.Dim(0);
            int image_height = gray_image.Dim(1);

            int[]    hist = new int[MAXVAL];
            double[] pdf  = new double[MAXVAL]; //probability distribution
            double[] cdf  = new double[MAXVAL]; //cumulative probability distribution
            double[] myu  = new double[MAXVAL]; // mean value for separation
            double   max_sigma;

            double[] sigma = new double[MAXVAL]; // inter-class variance

            /* Histogram generation */
            for (int i = 0; i < MAXVAL; i++)
            {
                hist[i] = 0;
            }
            for (int x = 0; x < image_width; x++)
            {
                for (int y = 0; y < image_height; y++)
                {
                    hist[gray_image[x, y]]++;
                }
            }

            /* calculation of probability density */
            for (int i = 0; i < MAXVAL; i++)
            {
                pdf[i] = (double)hist[i] / (image_width * image_height);
            }

            /* cdf & myu generation */
            cdf[0] = pdf[0];
            myu[0] = 0.0;       /* 0.0 times prob[0] equals zero */
            for (int i = 1; i < MAXVAL; i++)
            {
                cdf[i] = cdf[i - 1] + pdf[i];
                myu[i] = myu[i - 1] + i * pdf[i];
            }

            /* sigma maximization
             * sigma stands for inter-class variance
             * and determines optimal threshold value */
            int threshold = 0;

            max_sigma = 0.0;
            for (int i = 0; i < MAXVAL - 1; i++)
            {
                if (cdf[i] != 0.0 && cdf[i] != 1.0)
                {
                    double p1p2       = cdf[i] * (1.0 - cdf[i]);
                    double mu1mu2diff = myu[MAXVAL - 1] * cdf[i] - myu[i];
                    sigma[i] = mu1mu2diff * mu1mu2diff / p1p2;
                }
                else
                {
                    sigma[i] = 0.0;
                }
                if (sigma[i] > max_sigma)
                {
                    max_sigma = sigma[i];
                    threshold = i;
                }
            }


            for (int x = 0; x < image_width; x++)
            {
                for (int y = 0; y < image_height; y++)
                {
                    if (gray_image[x, y] > threshold)
                    {
                        bin_image[x, y] = (byte)(MAXVAL - 1);
                    }
                    else
                    {
                        bin_image[x, y] = 0;
                    }
                }
            }

            if (PGeti("debug_otsu") > 0)
            {
                Logger.Default.Format("Otsu threshold value = {0}\n", threshold);
                //ImgIo.write_image_gray("debug_otsu.png", bin_image);
            }
        }
Example #33
0
 public override void SetImage(Bytearray image)
 {
     dimage.Copy(image);
     int w = image.Dim(0), h = image.Dim(1);
     wimage.Resize(w, h);
     wimage.Fill(0);
     float s1 = 0.0f, sy = 0.0f;
     for(int i=1; i<w; i++) for(int j=0; j<h; j++) {
             if(image[i,j] > 0) { s1++; sy += j; }
             if(image[i-1,j]==0 && image[i,j]>0) wimage[i,j] = boundary_weight;
             else if(image[i,j]>0) wimage[i,j] = inside_weight;
             else wimage[i,j] = outside_weight;
         }
     where = (int)(sy/s1);
     for(int i=0;i<dimage.Dim(0);i++) dimage[i, where] = 0x008000;
 }
Example #34
0
        public override void Binarize(Bytearray bin_image, Bytearray gray_image)
        {
            w = PGeti("w");
            k = (float)PGetf("k");
            whalf = w >> 1;
            // fprintf(stderr,"[sauvola %g %d]\n",k,w);
            if(k<0.001 || k>0.999)
                throw new Exception("Binarize: CHECK_ARG(k>=0.001 && k<=0.999)");
            if(w==0 || k>=1000)
                throw new Exception("Binarize: CHECK_ARG(w>0 && k<1000)");
            if(bin_image.Length1d() != gray_image.Length1d())
                bin_image.MakeLike(gray_image);

            if(NarrayUtil.contains_only(gray_image, (byte)0, (byte)255))
            {
                bin_image.Copy(gray_image);
                return;
            }

            int image_width  = gray_image.Dim(0);
            int image_height = gray_image.Dim(1);
            whalf = w >> 1;

            // Calculate the integral image, and integral of the squared image
            Narray<long> integral_image = new Narray<long>(), rowsum_image = new Narray<long>();
            Narray<long> integral_sqimg = new Narray<long>(), rowsum_sqimg = new Narray<long>();
            integral_image.MakeLike(gray_image);
            rowsum_image.MakeLike(gray_image);
            integral_sqimg.MakeLike(gray_image);
            rowsum_sqimg.MakeLike(gray_image);
            int xmin,ymin,xmax,ymax;
            double diagsum,idiagsum,diff,sqdiagsum,sqidiagsum,sqdiff,area;
            double mean,std,threshold;

            for (int j = 0; j < image_height; j++)
            {
                rowsum_image[0, j] = gray_image[0, j];
                rowsum_sqimg[0, j] = gray_image[0, j] * gray_image[0, j];
            }
            for (int i = 1; i < image_width; i++)
            {
                for (int j = 0; j < image_height; j++)
                {
                    rowsum_image[i, j] = rowsum_image[i - 1, j] + gray_image[i, j];
                    rowsum_sqimg[i, j] = rowsum_sqimg[i - 1, j] + gray_image[i, j] * gray_image[i, j];
                }
            }

            for (int i = 0; i < image_width; i++)
            {
                integral_image[i, 0] = rowsum_image[i, 0];
                integral_sqimg[i, 0] = rowsum_sqimg[i, 0];
            }
            for (int i = 0; i < image_width; i++)
            {
                for (int j = 1; j < image_height; j++)
                {
                    integral_image[i, j] = integral_image[i, j - 1] + rowsum_image[i, j];
                    integral_sqimg[i, j] = integral_sqimg[i, j - 1] + rowsum_sqimg[i, j];
                }
            }

            //Calculate the mean and standard deviation using the integral image

            for(int i=0; i<image_width; i++){
                for(int j=0; j<image_height; j++){
                    xmin = Math.Max(0,i-whalf);
                    ymin = Math.Max(0, j - whalf);
                    xmax = Math.Min(image_width - 1, i + whalf);
                    ymax = Math.Min(image_height - 1, j + whalf);
                    area = (xmax-xmin+1)*(ymax-ymin+1);
                    // area can't be 0 here
                    // proof (assuming whalf >= 0):
                    // we'll prove that (xmax-xmin+1) > 0,
                    // (ymax-ymin+1) is analogous
                    // It's the same as to prove: xmax >= xmin
                    // image_width - 1 >= 0         since image_width > i >= 0
                    // i + whalf >= 0               since i >= 0, whalf >= 0
                    // i + whalf >= i - whalf       since whalf >= 0
                    // image_width - 1 >= i - whalf since image_width > i
                    // --IM
                    if (area <= 0)
                        throw new Exception("Binarize: area can't be 0 here");
                    if (xmin == 0 && ymin == 0)
                    { // Point at origin
                        diff = integral_image[xmax, ymax];
                        sqdiff = integral_sqimg[xmax, ymax];
                    }
                    else if (xmin == 0 && ymin > 0)
                    { // first column
                        diff = integral_image[xmax, ymax] - integral_image[xmax, ymin - 1];
                        sqdiff = integral_sqimg[xmax, ymax] - integral_sqimg[xmax, ymin - 1];
                    }
                    else if (xmin > 0 && ymin == 0)
                    { // first row
                        diff = integral_image[xmax, ymax] - integral_image[xmin - 1, ymax];
                        sqdiff = integral_sqimg[xmax, ymax] - integral_sqimg[xmin - 1, ymax];
                    }
                    else
                    { // rest of the image
                        diagsum = integral_image[xmax, ymax] + integral_image[xmin - 1, ymin - 1];
                        idiagsum = integral_image[xmax, ymin - 1] + integral_image[xmin - 1, ymax];
                        diff = diagsum - idiagsum;
                        sqdiagsum = integral_sqimg[xmax, ymax] + integral_sqimg[xmin - 1, ymin - 1];
                        sqidiagsum = integral_sqimg[xmax, ymin - 1] + integral_sqimg[xmin - 1, ymax];
                        sqdiff = sqdiagsum - sqidiagsum;
                    }

                    mean = diff/area;
                    std  = Math.Sqrt((sqdiff - diff*diff/area)/(area-1));
                    threshold = mean*(1+k*((std/128)-1));
                    if(gray_image[i,j] < threshold)
                        bin_image[i,j] = 0;
                    else
                        bin_image[i,j] = (byte)(MAXVAL-1);
                }
            }
            if(PGeti("debug_binarize") > 0) {
                ImgIo.write_image_gray("debug_binarize.png", bin_image);
            }
        }