public static void examineCorpus(Corpus corpus) { ArrayListMultiMap <FeatureVectorAsObject, int> wsByFeatureVectorGroup = ArrayListMultiMap <FeatureVectorAsObject, int> .create(); ArrayListMultiMap <FeatureVectorAsObject, int> hposByFeatureVectorGroup = ArrayListMultiMap <FeatureVectorAsObject, int> .create(); int numContexts = corpus.featureVectors.Count; for (int i = 0; i < numContexts; i++) { int[] X = corpus.featureVectors[i]; int y1 = corpus.injectWhitespace[i]; int y2 = corpus.hpos[i]; wsByFeatureVectorGroup.Add(new FeatureVectorAsObject(X, Trainer.FEATURES_INJECT_WS), y1); hposByFeatureVectorGroup.Add(new FeatureVectorAsObject(X, Trainer.FEATURES_HPOS), y2); } IList <double> wsEntropies = new List <double>(); IList <double> hposEntropies = new List <double>(); foreach (FeatureVectorAsObject x in wsByFeatureVectorGroup.Keys) { var cats = wsByFeatureVectorGroup[x]; var cats2 = hposByFeatureVectorGroup[x]; HashBag <int> wsCats = getCategoriesBag(cats); HashBag <int> hposCats = getCategoriesBag(cats2); double wsEntropy = getNormalizedCategoryEntropy(getCategoryRatios(wsCats.Values)); double hposEntropy = getNormalizedCategoryEntropy(getCategoryRatios(hposCats.Values)); wsEntropies.Add(wsEntropy); hposEntropies.Add(hposEntropy); Console.Write("{0,130} : {1},{2} {3},{4}\n", x, wsCats, wsEntropy, hposCats, hposEntropy); } Console.WriteLine("MEAN " + BuffUtils.mean(wsEntropies)); Console.WriteLine("MEAN " + BuffUtils.mean(hposEntropies)); float contextRichness = wsEntropies.Count / (float)numContexts; // 0..1 where 1 means every token had different context Console.WriteLine("Context richness = " + contextRichness + " uniq ctxs=" + wsEntropies.Count + ", nctxs=" + numContexts); }
public static void computeConsistency(LangDescriptor language, bool report) { if (report) { Console.WriteLine("-----------------------------------"); Console.WriteLine(language.name); Console.WriteLine("-----------------------------------"); } Corpus corpus = new Corpus(language.corpusDir, language); corpus.train(); // a map of feature vector to list of exemplar indexes of that feature MyMultiMap <FeatureVectorAsObject, int> wsContextToIndex = new MyMultiMap <FeatureVectorAsObject, int>(); MyMultiMap <FeatureVectorAsObject, int> hposContextToIndex = new MyMultiMap <FeatureVectorAsObject, int>(); int n = corpus.featureVectors.Count; for (int i = 0; i < n; i++) { int[] features = corpus.featureVectors[i]; wsContextToIndex.Map(new FeatureVectorAsObject(features, Trainer.FEATURES_INJECT_WS), i); hposContextToIndex.Map(new FeatureVectorAsObject(features, Trainer.FEATURES_HPOS), i); } int num_ambiguous_ws_vectors = 0; int num_ambiguous_hpos_vectors = 0; // Dump output grouped by ws vs hpos then feature vector then category if (report) { Console.WriteLine(" --- INJECT WS ---"); } IList <double> ws_entropies = new List <double>(); foreach (FeatureVectorAsObject fo in wsContextToIndex.Keys) { var exemplarIndexes = wsContextToIndex[fo]; // we have group by feature vector, now group by cat with that set for ws MyMultiMap <int, int> wsCatToIndexes = new MyMultiMap <int, int>(); foreach (int i in exemplarIndexes) { wsCatToIndexes.Map(corpus.injectWhitespace[i], i); } if (wsCatToIndexes.Count == 1) { continue; } if (report) { Console.WriteLine("Feature vector has " + exemplarIndexes.size() + " exemplars"); } IList <int> catCounts = BuffUtils.map(wsCatToIndexes.Values, (x) => x.size()); double wsEntropy = Entropy.getNormalizedCategoryEntropy(Entropy.getCategoryRatios(catCounts)); if (report) { Console.Write("entropy={0,5:F4}\n", wsEntropy); } wsEntropy *= exemplarIndexes.size(); ws_entropies.Add(wsEntropy); num_ambiguous_ws_vectors += exemplarIndexes.size(); if (report) { Console.Write(Trainer.featureNameHeader(Trainer.FEATURES_INJECT_WS)); } if (report) { foreach (int cat in wsCatToIndexes.Keys) { var indexes = wsCatToIndexes[cat]; foreach (int i in indexes) { string display = getExemplarDisplay(Trainer.FEATURES_INJECT_WS, corpus, corpus.injectWhitespace, i); Console.WriteLine(display); } Console.WriteLine(); } } } if (report) { Console.WriteLine(" --- HPOS ---"); } IList <double> hpos_entropies = new List <double>(); foreach (FeatureVectorAsObject fo in hposContextToIndex.Keys) { MyHashSet <int> exemplarIndexes = hposContextToIndex[fo]; // we have group by feature vector, now group by cat with that set for hpos MyMultiMap <int, int> hposCatToIndexes = new MyMultiMap <int, int>(); foreach (int i in exemplarIndexes) { hposCatToIndexes.Map(corpus.hpos[i], i); } if (hposCatToIndexes.Count == 1) { continue; } if (report) { Console.WriteLine("Feature vector has " + exemplarIndexes.size() + " exemplars"); } IList <int> catCounts = BuffUtils.map(hposCatToIndexes.Values, (x) => x.size()); double hposEntropy = Entropy.getNormalizedCategoryEntropy(Entropy.getCategoryRatios(catCounts)); if (report) { Console.Write("entropy={0,5:F4}\n", hposEntropy); } hposEntropy *= exemplarIndexes.size(); hpos_entropies.Add(hposEntropy); num_ambiguous_hpos_vectors += exemplarIndexes.size(); if (report) { Console.Write(Trainer.featureNameHeader(Trainer.FEATURES_HPOS)); } if (report) { foreach (int cat in hposCatToIndexes.Keys) { var indexes = hposCatToIndexes[cat]; foreach (int?i in indexes) { string display = getExemplarDisplay(Trainer.FEATURES_HPOS, corpus, corpus.hpos, i.Value); Console.WriteLine(display); } Console.WriteLine(); } } } Console.WriteLine(); Console.WriteLine(language.name); Console.WriteLine("There are " + wsContextToIndex.Count + " unique ws feature vectors out of " + n + " = " + string.Format("{0,3:F1}%", 100.0 * wsContextToIndex.Count / n)); Console.WriteLine("There are " + hposContextToIndex.Count + " unique hpos feature vectors out of " + n + " = " + string.Format("{0,3:F1}%", 100.0 * hposContextToIndex.Count / n)); float prob_ws_ambiguous = num_ambiguous_ws_vectors / (float)n; Console.Write("num_ambiguous_ws_vectors = {0,5:D}/{1,5:D} = {2,5:F3}\n", num_ambiguous_ws_vectors, n, prob_ws_ambiguous); float prob_hpos_ambiguous = num_ambiguous_hpos_vectors / (float)n; Console.Write("num_ambiguous_hpos_vectors = {0,5:D}/{1,5:D} = {2,5:F3}\n", num_ambiguous_hpos_vectors, n, prob_hpos_ambiguous); // Collections.sort(ws_entropies); // System.out.println("ws_entropies="+ws_entropies); Console.WriteLine("ws median,mean = " + BuffUtils.median(ws_entropies) + "," + BuffUtils.mean(ws_entropies)); double expected_ws_entropy = (BuffUtils.sumDoubles(ws_entropies) / num_ambiguous_ws_vectors) * prob_ws_ambiguous; Console.WriteLine("expected_ws_entropy=" + expected_ws_entropy); Console.WriteLine("hpos median,mean = " + BuffUtils.median(hpos_entropies) + "," + BuffUtils.mean(hpos_entropies)); double expected_hpos_entropy = (BuffUtils.sumDoubles(hpos_entropies) / num_ambiguous_hpos_vectors) * prob_hpos_ambiguous; Console.WriteLine("expected_hpos_entropy=" + expected_hpos_entropy); }