Example #1
0
        public static void reconstruct_picture(Network net, float[] features, Image recon, Image update, float rate, float momentum, float lambda, int smoothSize, int iters)
        {
            int iter = 0;

            for (iter = 0; iter < iters; ++iter)
            {
                Image delta = new Image(recon.W, recon.H, recon.C);

                NetworkState state = new NetworkState();
                state.Input = (float[])recon.Data.Clone();
                state.Delta = (float[])delta.Data.Clone();
                state.Truth = new float[Network.get_network_output_size(net)];
                Array.Copy(features, 0, state.Truth, 0, state.Truth.Length);

                Network.forward_network_gpu(net, state);
                Network.backward_network_gpu(net, state);

                Array.Copy(state.Delta, delta.Data, delta.W * delta.H * delta.C);

                Blas.Axpy_cpu(recon.W * recon.H * recon.C, 1, delta.Data, update.Data);
                Smooth(recon, update, lambda, smoothSize);

                Blas.Axpy_cpu(recon.W * recon.H * recon.C, rate, update.Data, recon.Data);
                Blas.Scal_cpu(recon.W * recon.H * recon.C, momentum, update.Data, 1);

                LoadArgs.constrain_image(recon);
            }
        }
Example #2
0
        private static void optimize_picture(Network net, Image orig, int maxLayer, float scale, float rate, float thresh, bool norm)
        {
            net.N = maxLayer + 1;

            int  dx   = Utils.Rand.Next() % 16 - 8;
            int  dy   = Utils.Rand.Next() % 16 - 8;
            bool flip = Utils.Rand.Next() % 2 != 0;

            Image crop = LoadArgs.crop_image(orig, dx, dy, orig.W, orig.H);
            Image im   = LoadArgs.resize_image(crop, (int)(orig.W * scale), (int)(orig.H * scale));

            if (flip)
            {
                LoadArgs.flip_image(im);
            }

            Network.resize_network(net, im.W, im.H);
            Layer last = net.Layers[net.N - 1];

            Image delta = new Image(im.W, im.H, im.C);

            NetworkState state = new NetworkState();

            state.Input = (float[])im.Data.Clone();
            state.Delta = (float[])im.Data.Clone();

            Network.forward_network_gpu(net, state);
            Blas.copy_ongpu(last.Outputs, last.OutputGpu, last.DeltaGpu);

            Array.Copy(last.DeltaGpu, last.Delta, last.Outputs);
            calculate_loss(last.Delta, last.Delta, last.Outputs, thresh);
            Array.Copy(last.Delta, last.DeltaGpu, last.Outputs);

            Network.backward_network_gpu(net, state);

            Array.Copy(state.Delta, delta.Data, im.W * im.H * im.C);


            if (flip)
            {
                LoadArgs.flip_image(delta);
            }

            Image resized = LoadArgs.resize_image(delta, orig.W, orig.H);
            Image outi    = LoadArgs.crop_image(resized, -dx, -dy, orig.W, orig.H);

            if (norm)
            {
                Utils.normalize_array(outi.Data, outi.W * outi.H * outi.C);
            }
            Blas.Axpy_cpu(orig.W * orig.H * orig.C, rate, outi.Data, orig.Data);

            LoadArgs.constrain_image(orig);
        }
Example #3
0
        private static void generate_vid_rnn(string cfgfile, string weightfile)
        {
            Network extractor = Parser.parse_network_cfg("cfg/extractor.recon.cfg");

            Parser.load_weights(extractor, "/home/pjreddie/trained/yolo-coco.conv");

            Network net = Parser.parse_network_cfg(cfgfile);

            if (string.IsNullOrEmpty(weightfile))
            {
                Parser.load_weights(net, weightfile);
            }
            Network.set_batch_network(extractor, 1);
            Network.set_batch_network(net, 1);

            int          i;
            VideoCapture cap = new VideoCapture("/extra/vid/ILSVRC2015/Data.Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4");

            float[] feat;
            float[] next;
            next = null;
            Image last = null;

            for (i = 0; i < 25; ++i)
            {
                Image im = LoadArgs.get_image_from_stream(cap);
                Image re = LoadArgs.resize_image(im, extractor.W, extractor.H);
                feat = Network.network_predict(extractor, re.Data);
                if (i > 0)
                {
                    Console.Write($"%f %f\n", Utils.mean_array(feat, 14 * 14 * 512), Utils.variance_array(feat, 14 * 14 * 512));
                    Console.Write($"%f %f\n", Utils.mean_array(next, 14 * 14 * 512), Utils.variance_array(next, 14 * 14 * 512));
                    Console.Write($"%f\n", Utils.mse_array(feat, 14 * 14 * 512));
                    Blas.Axpy_cpu(14 * 14 * 512, -1, feat, next);
                    Console.Write($"%f\n", Utils.mse_array(next, 14 * 14 * 512));
                }
                next = Network.network_predict(net, feat);
                if (i == 24)
                {
                    last = new Image(re);
                }
            }
            for (i = 0; i < 30; ++i)
            {
                next = Network.network_predict(net, next);
                Image newi = save_reconstruction(extractor, last, next, "new", i);
                last = newi;
            }
        }
Example #4
0
        private static void test_cifar_multi(string filename, string weightfile)
        {
            Network net = Parser.parse_network_cfg(filename);

            if (string.IsNullOrEmpty(weightfile))
            {
                Parser.load_weights(net, weightfile);
            }
            Network.set_batch_network(net, 1);


            float avgAcc = 0;

            Data.Data test = Data.Data.load_cifar10_data("Data.Data/cifar/cifar-10-batches-bin/test_batch.bin");

            int i;

            for (i = 0; i < test.X.Rows; ++i)
            {
                Image im = new Image(32, 32, 3, test.X.Vals[i]);

                float[] pred = new float[10];

                float[] p = Network.network_predict(net, im.Data);
                Blas.Axpy_cpu(10, 1, p, pred);
                LoadArgs.flip_image(im);
                p = Network.network_predict(net, im.Data);
                Blas.Axpy_cpu(10, 1, p, pred);

                int index  = Utils.max_index(pred, 10);
                int sclass = Utils.max_index(test.Y.Vals[i], 10);
                if (index == sclass)
                {
                    avgAcc += 1;
                }
                Console.Write($"%4d: %.2f%%\n", i, 100f * avgAcc / (i + 1));
            }
        }
Example #5
0
        private static void validate_classifier_multi(string datacfg, string filename, string weightfile)
        {
            int     i, j;
            Network net = Parser.parse_network_cfg(filename);

            Network.set_batch_network(net, 1);
            if (string.IsNullOrEmpty(weightfile))
            {
                Parser.load_weights(net, weightfile);
            }


            var options = OptionList.read_data_cfg(datacfg);

            string labelList = OptionList.option_find_str(options, "labels", "Data.Data/labels.list");
            string validList = OptionList.option_find_str(options, "valid", "Data.Data/train.list");
            int    classes   = OptionList.option_find_int(options, "classes", 2);
            int    topk      = OptionList.option_find_int(options, "top", 1);

            string[] labels  = Data.Data.get_labels(labelList);
            int[]    scales  = { 224, 288, 320, 352, 384 };
            int      nscales = scales.Length;

            string[] paths = Data.Data.GetPaths(validList);
            int      m     = paths.Length;

            float avgAcc  = 0;
            float avgTopk = 0;

            int[] indexes = new int[topk];

            for (i = 0; i < m; ++i)
            {
                int    class2 = -1;
                string path   = paths[i];
                for (j = 0; j < classes; ++j)
                {
                    if (path.Contains(labels[j]))
                    {
                        class2 = j;
                        break;
                    }
                }
                float[] pred = new float[classes];
                Image   im   = LoadArgs.load_image_color(paths[i], 0, 0);
                for (j = 0; j < nscales; ++j)
                {
                    Image r = LoadArgs.resize_min(im, scales[j]);
                    Network.resize_network(net, r.W, r.H);
                    float[] p = Network.network_predict(net, r.Data);
                    if (net.Hierarchy != null)
                    {
                        net.Hierarchy.Hierarchy_predictions(p, 0, net.Outputs, true);
                    }
                    Blas.Axpy_cpu(classes, 1, p, pred);
                    LoadArgs.flip_image(r);
                    p = Network.network_predict(net, r.Data);
                    Blas.Axpy_cpu(classes, 1, p, pred);
                }
                Utils.top_k(pred, classes, topk, indexes);
                if (indexes[0] == class2)
                {
                    avgAcc += 1;
                }
                for (j = 0; j < topk; ++j)
                {
                    if (indexes[j] == class2)
                    {
                        avgTopk += 1;
                    }
                }

                Console.Write($"%d: top 1: %f, top %d: %f\n", i, avgAcc / (i + 1), topk, avgTopk / (i + 1));
            }
        }
Example #6
0
        private static void validate_classifier_10(string datacfg, string filename, string weightfile)
        {
            int     i, j;
            Network net = Parser.parse_network_cfg(filename);

            Network.set_batch_network(net, 1);
            if (string.IsNullOrEmpty(weightfile))
            {
                Parser.load_weights(net, weightfile);
            }


            var options = OptionList.read_data_cfg(datacfg);

            string labelList = OptionList.option_find_str(options, "labels", "Data.Data/labels.list");
            string validList = OptionList.option_find_str(options, "valid", "Data.Data/train.list");
            int    classes   = OptionList.option_find_int(options, "classes", 2);
            int    topk      = OptionList.option_find_int(options, "top", 1);

            string[] labels = Data.Data.get_labels(labelList);

            string[] paths = Data.Data.GetPaths(validList);
            int      m     = paths.Length;

            float avgAcc  = 0;
            float avgTopk = 0;

            int[] indexes = new int[topk];

            for (i = 0; i < m; ++i)
            {
                int    class2 = -1;
                string path   = paths[i];
                for (j = 0; j < classes; ++j)
                {
                    if (path.Contains(labels[j]))
                    {
                        class2 = j;
                        break;
                    }
                }
                int     w      = net.W;
                int     h      = net.H;
                int     shift  = 32;
                Image   im     = LoadArgs.load_image_color(paths[i], w + shift, h + shift);
                Image[] images = new Image[10];
                images[0] = LoadArgs.crop_image(im, -shift, -shift, w, h);
                images[1] = LoadArgs.crop_image(im, shift, -shift, w, h);
                images[2] = LoadArgs.crop_image(im, 0, 0, w, h);
                images[3] = LoadArgs.crop_image(im, -shift, shift, w, h);
                images[4] = LoadArgs.crop_image(im, shift, shift, w, h);
                LoadArgs.flip_image(im);
                images[5] = LoadArgs.crop_image(im, -shift, -shift, w, h);
                images[6] = LoadArgs.crop_image(im, shift, -shift, w, h);
                images[7] = LoadArgs.crop_image(im, 0, 0, w, h);
                images[8] = LoadArgs.crop_image(im, -shift, shift, w, h);
                images[9] = LoadArgs.crop_image(im, shift, shift, w, h);
                float[] pred = new float[classes];
                for (j = 0; j < 10; ++j)
                {
                    float[] p = Network.network_predict(net, images[j].Data);
                    if (net.Hierarchy != null)
                    {
                        net.Hierarchy.Hierarchy_predictions(p, 0, net.Outputs, true);
                    }
                    Blas.Axpy_cpu(classes, 1, p, pred);
                }
                Utils.top_k(pred, classes, topk, indexes);
                if (indexes[0] == class2)
                {
                    avgAcc += 1;
                }
                for (j = 0; j < topk; ++j)
                {
                    if (indexes[j] == class2)
                    {
                        avgTopk += 1;
                    }
                }

                Console.Write($"%d: top 1: %f, top %d: %f\n", i, avgAcc / (i + 1), topk, avgTopk / (i + 1));
            }
        }
Example #7
0
        private static void Average(List <string> args)
        {
            string cfgfile = args[2];
            string outfile = args[3];

            Network net = Parser.parse_network_cfg(cfgfile);
            Network sum = Parser.parse_network_cfg(cfgfile);

            string weightfile = args[4];

            Parser.load_weights(sum, weightfile);

            int i, j;
            int n = args.Count - 5;

            for (i = 0; i < n; ++i)
            {
                weightfile = args[i + 5];
                Parser.load_weights(net, weightfile);
                for (j = 0; j < net.N; ++j)
                {
                    Layer l    = net.Layers[j];
                    Layer outl = sum.Layers[j];
                    if (l.LayerType == LayerType.Convolutional)
                    {
                        int num = l.N * l.C * l.Size * l.Size;
                        Blas.Axpy_cpu(l.N, 1, l.BiasesComplete, outl.BiasesComplete, l.BiasesIndex, outl.BiasesIndex);
                        Blas.Axpy_cpu(num, 1, l.WeightsComplete, outl.WeightsComplete, l.WeightsIndex, outl.WeightsIndex);
                        if (l.BatchNormalize)
                        {
                            Blas.Axpy_cpu(l.N, 1, l.Scales, outl.Scales);
                            Blas.Axpy_cpu(l.N, 1, l.RollingMean, outl.RollingMean);
                            Blas.Axpy_cpu(l.N, 1, l.RollingVariance, outl.RollingVariance);
                        }
                    }
                    if (l.LayerType == LayerType.Connected)
                    {
                        Blas.Axpy_cpu(l.Outputs, 1, l.BiasesComplete, outl.BiasesComplete, l.BiasesIndex, outl.BiasesIndex);
                        Blas.Axpy_cpu(l.Outputs * l.Inputs, 1, l.WeightsComplete, outl.WeightsComplete, l.WeightsIndex, outl.WeightsIndex);
                    }
                }
            }
            n = n + 1;
            for (j = 0; j < net.N; ++j)
            {
                Layer l = sum.Layers[j];
                if (l.LayerType == LayerType.Convolutional)
                {
                    int num = l.N * l.C * l.Size * l.Size;
                    Blas.Scal_cpu(l.N, 1.0f / n, l.BiasesComplete, 1, l.BiasesIndex);
                    Blas.Scal_cpu(num, 1.0f / n, l.WeightsComplete, 1, l.WeightsIndex);
                    if (l.BatchNormalize)
                    {
                        Blas.Scal_cpu(l.N, 1.0f / n, l.Scales, 1);
                        Blas.Scal_cpu(l.N, 1.0f / n, l.RollingMean, 1);
                        Blas.Scal_cpu(l.N, 1.0f / n, l.RollingVariance, 1);
                    }
                }
                if (l.LayerType == LayerType.Connected)
                {
                    Blas.Scal_cpu(l.Outputs, 1.0f / n, l.BiasesComplete, 1, l.BiasesIndex);
                    Blas.Scal_cpu(l.Outputs * l.Inputs, 1.0f / n, l.WeightsComplete, 1, l.WeightsIndex);
                }
            }
            Parser.save_weights(sum, outfile);
        }