Example #1
0
        public void TestCECountermeasureSelectionFDS()
        {
            var input = File.ReadAllText("/Users/acailliau/Google Drive/PhD/Dissertation/running-example-fds/model2.kaos");

            ModelBuilder parser = new ModelBuilder();
            var          model  = parser.Parse(input);

            var optimizer  = new MOCECountermeasureSelectionOptimizer(model);
            var propagator = new BDDBasedPropagator(model);

            var root = model.Goal("locals_warned_when_risk_imminent");

            var sr = (DoubleSatisfactionRate)propagator.GetESR(root);

            Console.WriteLine("Satisfaction Rate without countermeasures: " + sr.SatisfactionRate);
            Console.WriteLine("Required Satisfaction Rate: " + root.RDS);

            var optimalSelections = optimizer.GetOptimalSelections(root, propagator);

            if (optimalSelections.Count() == 0)
            {
                Console.WriteLine("Optimal selections: No countermeasure to select.");
                Console.WriteLine();
            }
            else
            {
                Console.WriteLine($"Optimal selections ({optimalSelections.Count()}):");
                foreach (var o in optimalSelections.Distinct().OrderBy(x => x.Cost).ThenBy(x => x.SatisfactionRate))
                {
                    Console.WriteLine("* " + o);
                }
            }
        }
Example #2
0
        public void TestMilestoneGoalRefinement()
        {
            var options = new RandomModelOptions {
                MinGoalBranchingFactor = 2,
                MaxGoalBranchingFactor = 4,
                NbGoals = 2,

                MinObstacleANDBranchingFactor = 2,
                MaxObstacleANDBranchingFactor = 4,
            };

            var generator = new RandomModelGenerator(options);
            var model     = generator.Generate();

            var p1 = new PatternBasedPropagator(model);
            var p2 = new BDDBasedPropagator(model);

            Console.WriteLine("Generated goals: " + model.Goals().Count());
            Console.WriteLine("Generated obstacles: " + model.Obstacles().Count());

            var root = model.RootGoals().Single();
            var sr1  = (DoubleSatisfactionRate)p1.GetESR(root);
            var sr2  = (DoubleSatisfactionRate)p2.GetESR(root);

            Assert.AreEqual(sr1.SatisfactionRate, sr2.SatisfactionRate, 0.0001);
        }
        public void TestRemoveObstructedGoal()
        {
            var input =
                @"declare goal [ anchor ] refinedby child1, child2 end
                  declare goal [ child1 ] obstructedby o1 end
                  declare goal [ child2 ] obstructedby o2 end
                  declare obstacle [ o1 ] probability .1 resolvedby [substitution:anchor] cm1 end
                  declare obstacle [ o2 ] refinedby so1 refinedby so2 end
                  declare obstacle [ so1 ] probability .2 resolvedby [substitution:anchor] cm2 end
                  declare obstacle [ so2 ] probability .3 end
                  declare goal [ cm1 ] end
                  declare goal [ cm2 ] obstructedby o_cm end
                  declare obstacle [ o_cm ] probability .4 end";

            var parser = new ModelBuilder();
            var model  = parser.Parse(input);

            var resolutions = model.Resolutions();

            foreach (var r in resolutions)
            {
                r.Name = "R_" + r.ResolvingGoalIdentifier;
            }
            var anchor = model.Goal("anchor");

            var p1 = new BDDBasedPropagator(model);

            System.Console.WriteLine(p1.GetESR(anchor));

            HashSet <Resolution> hashSet = new HashSet <Resolution> (model.Resolutions());
        }
Example #4
0
        public Dictionary <HashSet <Obstacle>, CriticalScore> GetObstacleScores(int combination_size)
        {
            var dict = new Dictionary <HashSet <Obstacle>, CriticalScore>();

            var obstacles = _model.LeafObstacles().ToList();

            foreach (var combination in GetAllCombinations(obstacles, combination_size))
            {
                var    d   = (DoubleSatisfactionRate)_propagator.GetESR(_root, combination);
                var    key = combination.ToHashSet();
                double combination_probability = combination.Aggregate(1d, (arg1, arg2) =>
                {
                    var sat_rate = (DoubleSatisfactionRate)_model.satisfactionRateRepository.GetObstacleSatisfactionRate(arg2.Identifier);
                    if (sat_rate == null)
                    {
                        throw new InvalidOperationException($"The obstacle '{arg2.Identifier}' was not estimated");
                    }
                    return(arg1 * sat_rate.SatisfactionRate);
                });
                var val = new CriticalScore(combination_probability, d.ViolationSeverity(rsr));
                dict.Add(key, val);
            }

            return(dict);
        }
        private double GetScore(IEnumerable <Goal> goals, IPropagator propagator, HashSet <string> selection, out IEnumerable <string> rootsSatisfied)
        {
            var r = _model.Resolutions().Where(x => selection.Contains(x.ResolvingGoalIdentifier));
            var rootGoalsSatisfied = new HashSet <string> ();

            integrator = new SoftResolutionIntegrator(_model);
            Console.WriteLine("---- Computing score for " + string.Join(",", selection) + ".");
            // Integrate the selection
            foreach (var resolution in r)
            {
                Console.WriteLine("Integrate " + resolution.ResolvingGoalIdentifier);
                integrator.Integrate(resolution);
            }

            var p2 = new BDDBasedPropagator(_model);

            //var all_goals_satisfied = true;
            var avg_sat_rate = 0.0;

            foreach (var goal in goals)
            {
                var satRate = ((DoubleSatisfactionRate)p2.GetESR(goal));
                avg_sat_rate += satRate.SatisfactionRate;
                if (satRate.SatisfactionRate >= goal.RDS)
                {
                    rootGoalsSatisfied.Add(goal.Identifier);
                }

                Console.WriteLine("Cost " + selection.Count);
                Console.WriteLine("Selected cm: " + string.Join(",", selection));
                Console.WriteLine($"{goal.Identifier} : {satRate.SatisfactionRate} >= {goal.RDS}.");
            }

            //var all_goals_satisfied = (satRate.SatisfactionRate > goal.RDS);


            var cost = selection.Count();


            foreach (var resolution in r)
            {
                integrator.Remove(resolution);
            }

            //if (!all_goals_satisfied)
            //{
            //	Console.WriteLine("---- not all goal satisfied, returning score = 0");
            //	return 0;
            //}

            rootsSatisfied = rootGoalsSatisfied;

            //if (satRate > goal.RDS) {
            Console.WriteLine("---- returning score = " + (avg_sat_rate / goals.Count()));
            return(avg_sat_rate / goals.Count());
            //} else {
            //	return 0;
            //}
        }
Example #6
0
        public void TestBestCountermeasureSelection()
        {
            var input = @"declare goal [ root ] rsr .75 refinedby child1, child2 end
                          declare goal [ child1 ] obstructedby o1 end
                          declare goal [ child2 ] obstructedby o2 end
                          declare obstacle [ o1 ] 
                            probability .2
                            resolvedby [substitution:root] cm1
                          end
                          declare obstacle [ o2 ] 
                            refinedby so1
                            refinedby so2
                          end
                          declare obstacle [ so1 ] 
                            probability .1
                            resolvedby [substitution:root] cm2
                          end
                          declare obstacle [ so2 ]
                            probability .3 
                            resolvedby [substitution:root] cm3
                          end";

            ModelBuilder parser = new ModelBuilder();
            var          model  = parser.Parse(input);

            var optimizer  = new NaiveCountermeasureSelectionOptimizer(model);
            var propagator = new BDDBasedPropagator(model);

            var root = model.Goal("root");

            var sr = (DoubleSatisfactionRate)propagator.GetESR(root);

            Console.WriteLine("Satisfaction Rate without countermeasures: " + sr.SatisfactionRate);
            Console.WriteLine("Required Satisfaction Rate: " + root.RDS);

            var minimalCost = optimizer.GetMinimalCost(root, propagator);

            Console.WriteLine("Minimal cost to guarantee RSR: " + minimalCost);

            if (minimalCost >= 0)
            {
                var optimalSelections = optimizer.GetOptimalSelections(minimalCost, root, propagator);

                if (optimalSelections.Count() == 0)
                {
                    Console.WriteLine("Optimal selections: No countermeasure to select.");
                    Console.WriteLine();
                }
                else
                {
                    Console.WriteLine($"Optimal selections ({optimalSelections.Count()}):");
                    foreach (var o in optimalSelections.Distinct())
                    {
                        Console.WriteLine("* " + o);
                    }
                }
            }
        }
Example #7
0
        public void TestCECountermeasureSelection2()
        {
            const string Path1 = "/Users/acailliau/Google Drive/PhD/Dissertation/case-studies/ambulance-dispatching-system/Models/runtime.kaos";
            var          input = File.ReadAllText(Path1);

            //input = @"declare goal [ root ] rsr .75 refinedby child1, child2 end
            //declare goal [ child1 ] obstructedby o1 end
            //declare goal [ child2 ] obstructedby o2 end
            //declare obstacle [ o1 ]
            //	probability .2
            //	resolvedby [substitution:root] cm1
            //end
            //declare obstacle [ o2 ]
            //	refinedby so1
            //	refinedby so2
            //end
            //declare obstacle [ so1 ]
            //	probability .1
            //	resolvedby [substitution:root] cm2
            //end
            //declare obstacle [ so2 ]
            //	probability .3
            //	resolvedby [substitution:root] cm3
            //end";

            ModelBuilder parser = new ModelBuilder();
            var          model  = parser.Parse(input, Path1);

            var optimizer  = new MOCECountermeasureSelectionOptimizer(model);
            var propagator = new BDDBasedPropagator(model);

            var root = model.Goal("achieve_incident_resolved");

            var sr = (DoubleSatisfactionRate)propagator.GetESR(root);

            Console.WriteLine("Satisfaction Rate without countermeasures: " + sr.SatisfactionRate);
            Console.WriteLine("Required Satisfaction Rate: " + root.RDS);

            //var minCost = optimizer.GetMinimalCost(root, propagator);
            //Console.WriteLine("Minimal cost: " + minCost);

            var optimalSelections = optimizer.GetOptimalSelections(root, propagator);

            if (optimalSelections.Count() == 0)
            {
                Console.WriteLine("Optimal selections: No countermeasure to select.");
                Console.WriteLine();
            }
            else
            {
                Console.WriteLine($"Optimal selections ({optimalSelections.Count()}):");
                foreach (var o in optimalSelections.Distinct().OrderBy(x => x.Cost).ThenBy(x => x.SatisfactionRate))
                {
                    Console.WriteLine("* " + o);
                }
            }
        }
Example #8
0
        public void Update(MonitoredState ms, DateTime datetime)
        {
            logger.Info("Update. " + _roots.Count);

            // Create the new monitors and update the existing ones accordingly
            foreach (var m in obstacleMonitors.Values)
            {
                try {
                    m.MonitorStep(ms, datetime);

                    if (m.MonitoredSatisfactionRate != null)
                    {
                        // Update the satisfaction rate for the obstacle
                        _model_running.satisfactionRateRepository.AddObstacleSatisfactionRate(
                            m.Obstacle.Identifier,
                            new DoubleSatisfactionRate(m.MonitoredSatisfactionRate.Mean));
                    }
                } catch (Exception e) {
                    logger.Error($"Fail to update monitor for '{m.Obstacle.FriendlyName}' ({e.Message})");
                }
            }

            // Compute the satisfaction rate for the root goals
            foreach (var root in _roots)
            {
                RootSatisfactionRates[root.Identifier] = (DoubleSatisfactionRate)_propagator.GetESR(root);
                logger.Info($"Satisfaction rate for {root.Identifier} = " + RootSatisfactionRates[root.Identifier]);
            }

            if (!string.IsNullOrEmpty(outputFilename))
            {
                var    now = DateTime.Now;
                string str = string.Format("{0:yyyy-MM-dd HH:mm:ss.fffffff},{1},{2}",
                                           now,
                                           string.Join(",", RootSatisfactionRates.OrderBy(x => x.Key).Select(x => x.Value.SatisfactionRate)),
                                           string.Join(",", obstacleMonitors.Select(x => (x.Value.MonitoredSatisfactionRate?.Mean ?? 0) + "," + (x.Value.MonitoredSatisfactionRate?.StdDev ?? 0)))
                                           );
                using (StreamWriter sw = File.AppendText(outputFilename))
                {
                    sw.WriteLine(str);
                }
            }
        }
        public void TestIntegrateSubstitutionProbabilityComputation()
        {
            var input = @"declare goal [ anchor ] refinedby child1, child2 end
                          declare goal [ child1 ] obstructedby o end
                          declare goal [ child2 ] end
                          declare obstacle [ o ] probability .4 resolvedby [substitution:anchor] cm end
                          declare goal [ cm ] obstructedby o2 end
                          declare obstacle [ o2 ] probability .1 end";

            ModelBuilder parser = new ModelBuilder();
            var          model  = parser.Parse(input);


            var integrator = new ResolutionIntegrator(model);
            var r          = model.Resolutions().Single();

            integrator.Integrate(r);

            var propagator = new BDDBasedPropagator(model);
            var expected   = ((DoubleSatisfactionRate)propagator.GetESR(model.Goal("anchor"))).SatisfactionRate;
        }
        public void TestIntegrateObstaclePreventionProbabilityComputation()
        {
            var input = @"declare goal [ root ] 
                            refinedby anchor
                          end
                          declare goal [ anchor ] 
                            formalspec when Current() then sooner-or-later Target()
                            refinedby child1, child2 
                          end
                          declare goal [ child1 ] 
                            formalspec when Current() then sooner-or-later Milestone()
                            obstructedby o
                          end
                          declare goal [ child2 ]
                            formalspec when Milestone() then sooner-or-later Target()
                          end
                          declare obstacle [ o ] 
                            probability .4
                            formalspec sooner-or-later (Current() and always not Milestone())
                            resolvedby [prevention:anchor] cm
                          end
                          declare goal [ cm ] obstructedby o2 end
                          declare obstacle [ o2 ] probability .1 end";

            ModelBuilder parser = new ModelBuilder();
            var          model  = parser.Parse(input);


            var integrator = new ResolutionIntegrator(model);
            var r          = model.Resolutions().Single();

            integrator.Integrate(r);

            var obstruction = model.Obstructions(x => x.ObstacleIdentifier == "o").Single();

            model.obstacleRepository.Remove(obstruction);

            var propagator = new BDDBasedPropagator(model);
            var expected   = ((DoubleSatisfactionRate)propagator.GetESR(model.Goal("root"))).SatisfactionRate;
        }
Example #11
0
        public static void Main(string [] args)
        {
            Console.WriteLine("*** This is CMSelector from KAOSTools. ***");
            Console.WriteLine("*** For more information on KAOSTools see <https://github.com/ancailliau/KAOSTools> ***");
            Console.WriteLine("*** Please report bugs to <https://github.com/ancailliau/KAOSTools/issues> ***");
            Console.WriteLine();
            Console.WriteLine("*** Copyright (c) 2017, Université catholique de Louvain ***");
            Console.WriteLine("");

            string rootname = "root";

            options.Add("root=", "Specify the root goal for which the selection shall be optimized. (Default: root)", v => rootname = v);

            Init(args);

            var root = model.Goal(rootname);

            if (root == null)
            {
                PrintError("The goal '" + rootname + "' was not found");
            }

            try {
                var optimizer  = new NaiveCountermeasureSelectionOptimizer(model);
                var propagator = new BDDBasedPropagator(model);

                var sr = (DoubleSatisfactionRate)propagator.GetESR(root);
                Console.WriteLine("Satisfaction Rate without countermeasures: " + sr.SatisfactionRate);
                Console.WriteLine("Required Satisfaction Rate: " + root.RDS);

                var minimalCost = optimizer.GetMinimalCost(root, propagator);
                Console.WriteLine("Minimal cost to guarantee RSR: " + minimalCost);

                if (minimalCost >= 0)
                {
                    var optimalSelections = optimizer.GetOptimalSelections(minimalCost, root, propagator);

                    if (optimalSelections.Count() == 0)
                    {
                        Console.WriteLine("Optimal selections: No countermeasure to select.");
                        Console.WriteLine();
                    }
                    else
                    {
                        Console.WriteLine($"Optimal selections ({optimalSelections.Count ()}):");
                        foreach (var o in optimalSelections.Distinct())
                        {
                            Console.WriteLine("* " + o);
                        }
                    }
                }
                else
                {
                    var optimalSelections = optimizer.GetOptimalSelections(minimalCost, root, propagator);
                    Console.WriteLine($"The best that can be achived ({optimalSelections.Count ()}):");
                    foreach (var o in optimalSelections.Distinct())
                    {
                        Console.WriteLine("* " + o);
                    }
                }

                var stat = optimizer.GetStatistics();
                Console.WriteLine();
                Console.WriteLine("--- Statistics ---");
                Console.WriteLine("Number of countermeasure goals: " + stat.NbResolvingGoals);
                Console.WriteLine("Number of possible selections: " + stat.NbSelections);
                Console.WriteLine("Number of safe selections: " + stat.NbSafeSelections);
                Console.WriteLine("Number of tested selections (for minimal cost): " + stat.NbTestedSelections);
                Console.WriteLine("Number of tested selections (for optimal selection): " + stat.NbTestedSelectionsForOptimality);
                Console.WriteLine("Maximal safe cost: " + stat.MaxSafeCost);
                Console.WriteLine("Time to compute minimal cost: " + stat.TimeToComputeMinimalCost);
                Console.WriteLine("Time to compute optimal selections: " + stat.TimeToComputeMinimalCost);
            } catch (Exception e) {
                PrintError("An error occured during the computation. (" + e.Message + ").\n"
                           + "Please report this error to <https://github.com/ancailliau/KAOSTools/issues>.\n"
                           + "----------------------------\n"
                           + e.StackTrace
                           + "\n----------------------------\n");
            }
        }
Example #12
0
 public DoubleSatisfactionRate BDDBasedComputationPrebuilt()
 {
     return((DoubleSatisfactionRate)p3.GetESR(root));
 }
Example #13
0
        public DoubleSatisfactionRate BDDBasedComputation()
        {
            var p2 = new BDDBasedPropagator(model);

            return((DoubleSatisfactionRate)p2.GetESR(root));
        }
Example #14
0
        public void TestCECountermeasureSelection()
        {
            var input = @"declare goal [ root ] rsr .75 refinedby child1, child2 end
                          declare goal [ child1 ] obstructedby o1 end
                          declare goal [ child2 ] obstructedby o2 end
                          declare obstacle [ o1 ] 
                            probability .2
                            refinedby so4
                            refinedby so5, so6
                          end
                          declare obstacle [ so4 ]
                            probability .1
                          end
                          declare obstacle [ so5 ]
                            probability .4
                            resolvedby [substitution:root] cm5
                          end
                          declare obstacle [ so6 ]
                            probability .4
                            resolvedby [substitution:root] cm4
                          end
                          declare obstacle [ o2 ] 
                            refinedby so1
                            refinedby so2
                          end
                          declare obstacle [ so1 ] 
                            probability .1
                            resolvedby [substitution:root] cm2
                          end
                          declare obstacle [ so2 ]
                            probability .3 
                            resolvedby [substitution:root] cm3
                          end
                          declare obstacle [ so3 ]
                            probability .4
                            resolvedby [substitution:root] cm4
                          end
                          ";

            //input = @"declare goal [ root ] rsr .75 refinedby child1, child2 end
            //declare goal [ child1 ] obstructedby o1 end
            //declare goal [ child2 ] obstructedby o2 end
            //declare obstacle [ o1 ]
            //	probability .2
            //	resolvedby [substitution:root] cm1
            //end
            //declare obstacle [ o2 ]
            //	refinedby so1
            //	refinedby so2
            //end
            //declare obstacle [ so1 ]
            //	probability .1
            //	resolvedby [substitution:root] cm2
            //end
            //declare obstacle [ so2 ]
            //	probability .3
            //	resolvedby [substitution:root] cm3
            //end";

            ModelBuilder parser = new ModelBuilder();
            var          model  = parser.Parse(input);

            var optimizer  = new MOCECountermeasureSelectionOptimizer(model);
            var propagator = new BDDBasedPropagator(model);

            var root = model.Goal("root");

            var sr = (DoubleSatisfactionRate)propagator.GetESR(root);

            Console.WriteLine("Satisfaction Rate without countermeasures: " + sr.SatisfactionRate);
            Console.WriteLine("Required Satisfaction Rate: " + root.RDS);

            //var minCost = optimizer.GetMinimalCost(root, propagator);
            //Console.WriteLine("Minimal cost: " + minCost);

            var optimalSelections = optimizer.GetOptimalSelections(root, propagator);

            if (optimalSelections.Count() == 0)
            {
                Console.WriteLine("Optimal selections: No countermeasure to select.");
                Console.WriteLine();
            }
            else
            {
                Console.WriteLine($"Optimal selections ({optimalSelections.Count()}):");
                foreach (var o in optimalSelections.Distinct().OrderBy(x => x.Cost).ThenBy(x => x.SatisfactionRate))
                {
                    Console.WriteLine("* " + o);
                }
            }
        }