public static float DotMultiplyIntrinsicWAvxWSpanPtr(ref Memory <float> vector1, ref Memory <float> vector2) { var span1 = vector1.Span; var span2 = vector2.Span; var cnt = Math.Min(span1.Length, span2.Length); var v3 = Vector256.CreateScalarUnsafe(0f); var vectLen = Vector256 <float> .Count; var vectCnt = cnt / vectLen; var total = 0f; #if TEST var file = Path.GetTempFileName(); using var writer = new StreamWriter(file); Console.WriteLine($"Intrinsic with AvxWPtr Mult. results will be written into {file}"); #endif int i; unsafe { var ptr1 = (float *)Unsafe.AsPointer(ref span1[0]); var ptr2 = (float *)Unsafe.AsPointer(ref span2[0]); for (i = 0; i < vectCnt; i++) { var v1 = Avx.LoadVector256(ptr1); var v2 = Avx.LoadVector256(ptr2); var t = Avx.Multiply(v1, v2); v3 = Avx.Add(v3, t); ptr1 += vectLen; ptr2 += vectLen; #if TEST writer.WriteLine($"{v1.ToString()}\t{v2.ToString()}\t{v3.ToString()}"); #endif } for (i = 0; i < vectLen; i++) { total += v3.GetElement(i); } i = vectCnt * vectLen; if (cnt % vectLen > 0) { ptr1 = (float *)Unsafe.AsPointer(ref span1[i]); ptr2 = (float *)Unsafe.AsPointer(ref span2[i]); for (; i < cnt; i++) { total += *ptr1++ **ptr2++; } } } if (vector1.Length != vector2.Length) { var h = vector1.Length > vector2.Length ? span1 : span2; for (var j = cnt; j < h.Length; j++) { total += h[j]; } } return(total); }
public unsafe void Vector256Mandel() { int floatL3Size = TOTALBYTES / sizeof(float); resolutionX = (int)MathF.Floor(MathF.Sqrt(floatL3Size * ratioy_x)); if (resolutionX % 8 != 0) { resolutionX -= resolutionX % 8; } resolutionY = (int)MathF.Floor(resolutionX * ratioy_x); if (resolutionY % 8 != 0) { resolutionY -= resolutionY % 8; } STEP_X = (RIGHT_X - LEFT_X) / resolutionX; STEP_Y = STEP_X; // ratioy_x * STEP_X; Bug from reddit comment numberOfPoints = resolutionX * resolutionY; results2 = new float[numberOfPoints]; xPoints = new float[resolutionX]; yPoints = new float[resolutionY]; for (int i = 0; i < resolutionX; i++) { xPoints.Span[i] = LEFT_X + i * STEP_X; } for (int i = 0; i < resolutionY; i++) { yPoints.Span[i] = TOP_Y - i * STEP_Y; } int countX = 0, countY = 0; int maxInter = 256; int inter; ReadOnlySpan <float> ySpan = yPoints.Span;// MemoryMarshal.Cast<float, Vector256<float>>(yPoints.Span); ReadOnlySpan <Vector256 <float> > xSpan = MemoryMarshal.Cast <float, Vector256 <float> >(xPoints.Span); Span <Vector256 <float> > res = MemoryMarshal.Cast <float, Vector256 <float> >(results2.Span); Span <Vector256 <float> > testSpan = MemoryMarshal.Cast <float, Vector256 <float> >(testValue2.Span); int resVectorNumber = 0; Vector256 <float> xVec, yVec; var oneVec = Vector256.Create(1.0f); var fourVec = Vector256.Create(4.0f); while (countY < ySpan.Length) { var currYVec = Vector256.Create(ySpan[countY]); while (countX < xSpan.Length) { Vector256 <float> currXVec = xSpan[countX]; var xSquVec = Vector256.Create(0.0f); var ySquVec = Vector256.Create(0.0f); var zSquVec = Vector256.Create(0.0f); var interVec = Vector256.Create(0.0f); Vector256 <float> sumVector = oneVec; inter = 0; bool goOn = true; while (goOn) { xVec = Avx.Add(Avx.Subtract(xSquVec, ySquVec), currXVec); yVec = Avx.Add(Avx.Subtract(Avx.Subtract(zSquVec, ySquVec), xSquVec), currYVec); xSquVec = Avx.Multiply(xVec, xVec); ySquVec = Avx.Multiply(yVec, yVec); zSquVec = Avx.Multiply(Avx.Add(xVec, yVec), Avx.Add(xVec, yVec)); Vector256 <float> test = Avx.Compare(Avx.Add(xSquVec, ySquVec), fourVec, FloatComparisonMode.OrderedLessThanOrEqualNonSignaling); // <= 4.0? sumVector = Avx.BlendVariable(Vector256 <float> .Zero, sumVector, test); // selects from second if true, from first otherwise goOn = (Avx.MoveMask(test) > 0) & (inter < maxInter); //any of the values still alive, and inter still below cutoff value? if (goOn) { interVec = Avx.Add(interVec, sumVector); } inter = goOn ? inter + 1 : inter; } testSpan[resVectorNumber] = Avx.Add(xSquVec, ySquVec); res[resVectorNumber] = interVec; resVectorNumber++; countX++; } countX = 0; countY++; } }
// Element-wise multiplication. public static IEnumerable <Vector256 <double> > Mul( this IEnumerable <Vector256 <double> > @this, Vector256 <double> other) => @this.Select(v => Avx.Multiply(v, other));
unsafe void IConvolver.SharpenLine(byte *cstart, byte *ystart, byte *bstart, byte *ostart, int ox, int ow, float amt, float thresh, bool gamma) { float *ip = (float *)cstart + (uint)ox * channels, yp = (float *)ystart + (uint)ox, bp = (float *)bstart, op = (float *)ostart; float *ipe = ip + (uint)ow * channels; bool threshold = thresh > 0f; if (Avx.IsSupported && ip <= ipe - VectorAvx.Count) { var vthresh = Vector256.Create(threshold ? thresh : -1f); var vmsk = Vector256.Create(0x7fffffff).AsSingle(); var vamt = Vector256.Create(amt); var vmin = VectorAvx.Zero; ipe -= VectorAvx.Count; do { var vd = Avx.Subtract(Avx.LoadVector256(yp), Avx.LoadVector256(bp)); yp += VectorAvx.Count; bp += VectorAvx.Count; if (threshold) { var sm = HWIntrinsics.AvxCompareGreaterThan(Avx.And(vd, vmsk), vthresh); vd = Avx.And(vd, sm); } vd = Avx.Multiply(vd, vamt); var v0 = Avx.LoadVector256(ip); ip += VectorAvx.Count; if (gamma) { v0 = Avx.Max(v0, vmin); v0 = Avx.Multiply(v0, Avx.ReciprocalSqrt(v0)); v0 = Avx.Add(v0, vd); v0 = Avx.Max(v0, vmin); v0 = Avx.Multiply(v0, v0); } else { v0 = Avx.Add(v0, vd); } Avx.Store(op, v0); op += VectorAvx.Count; } while (ip <= ipe); ipe += VectorAvx.Count; } else if (ip <= ipe - VectorSse.Count) { var vthresh = Vector128.Create(threshold ? thresh : -1f); var vmsk = Vector128.Create(0x7fffffff).AsSingle(); var vamt = Vector128.Create(amt); var vmin = VectorSse.Zero; ipe -= VectorSse.Count; do { var vd = Sse.Subtract(Sse.LoadVector128(yp), Sse.LoadVector128(bp)); yp += VectorSse.Count; bp += VectorSse.Count; if (threshold) { var sm = Sse.CompareGreaterThan(Sse.And(vd, vmsk), vthresh); vd = Sse.And(vd, sm); } vd = Sse.Multiply(vd, vamt); var v0 = Sse.LoadVector128(ip); ip += VectorSse.Count; if (gamma) { v0 = Sse.Max(v0, vmin); v0 = Sse.Multiply(v0, Sse.ReciprocalSqrt(v0)); v0 = Sse.Add(v0, vd); v0 = Sse.Max(v0, vmin); v0 = Sse.Multiply(v0, v0); } else { v0 = Sse.Add(v0, vd); } Sse.Store(op, v0); op += VectorSse.Count; } while (ip <= ipe); ipe += VectorSse.Count; } float fmin = VectorSse.Zero.ToScalar(); while (ip < ipe) { float dif = *yp++ - *bp++; float c0 = *ip++; if (!threshold || Math.Abs(dif) > thresh) { dif *= amt; if (gamma) { c0 = MathUtil.MaxF(c0, fmin).Sqrt(); c0 = MathUtil.MaxF(c0 + dif, fmin); c0 *= c0; } else { c0 += dif; } } *op++ = c0; } }
unsafe void IConvolver.ConvolveSourceLine(byte *istart, byte *tstart, int cb, byte *mapxstart, int smapx, int smapy) { float *tp = (float *)tstart, tpe = (float *)(tstart + cb); float *pmapx = (float *)mapxstart; int kstride = smapx * channels; int tstride = smapy * channels; int vcnt = smapx / Vector128 <float> .Count; while (tp < tpe) { int ix = *(int *)pmapx++; int lcnt = vcnt; float *ip = (float *)istart + ix * channels; float *mp = pmapx; pmapx += kstride; Vector128 <float> av0; if (Avx.IsSupported && lcnt >= 2) { var ax0 = Vector256 <float> .Zero; for (; lcnt >= 2; lcnt -= 2) { var iv0 = Avx.LoadVector256(ip); var iv1 = Avx.LoadVector256(ip + Vector256 <float> .Count); var iv2 = Avx.LoadVector256(ip + Vector256 <float> .Count * 2); var iv3 = Avx.LoadVector256(ip + Vector256 <float> .Count * 3); ip += Vector256 <int> .Count * channels; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count), iv1, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 2), iv2, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 3), iv3, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); ax0 = Avx.Add(ax0, Avx.Multiply(iv1, Avx.LoadVector256(mp + Vector256 <float> .Count))); ax0 = Avx.Add(ax0, Avx.Multiply(iv2, Avx.LoadVector256(mp + Vector256 <float> .Count * 2))); ax0 = Avx.Add(ax0, Avx.Multiply(iv3, Avx.LoadVector256(mp + Vector256 <float> .Count * 3))); } mp += Vector256 <float> .Count * channels; } av0 = Sse.Add(ax0.GetLower(), ax0.GetUpper()); } else { av0 = Vector128 <float> .Zero; } for (; lcnt != 0; lcnt--) { var iv0 = Sse.LoadVector128(ip); var iv1 = Sse.LoadVector128(ip + Vector128 <float> .Count); var iv2 = Sse.LoadVector128(ip + Vector128 <float> .Count * 2); var iv3 = Sse.LoadVector128(ip + Vector128 <float> .Count * 3); ip += Vector128 <float> .Count * channels; if (Fma.IsSupported) { av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp), iv0, av0); av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp + Vector128 <float> .Count), iv1, av0); av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp + Vector128 <float> .Count * 2), iv2, av0); av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp + Vector128 <float> .Count * 3), iv3, av0); } else { av0 = Sse.Add(av0, Sse.Multiply(iv0, Sse.LoadVector128(mp))); av0 = Sse.Add(av0, Sse.Multiply(iv1, Sse.LoadVector128(mp + Vector128 <float> .Count))); av0 = Sse.Add(av0, Sse.Multiply(iv2, Sse.LoadVector128(mp + Vector128 <float> .Count * 2))); av0 = Sse.Add(av0, Sse.Multiply(iv3, Sse.LoadVector128(mp + Vector128 <float> .Count * 3))); } mp += Vector128 <float> .Count * channels; } tp[0] = av0.ToScalar(); tp[1] = Sse.Shuffle(av0, av0, 0b_11_10_01_01).ToScalar(); tp[2] = Sse.UnpackHigh(av0, av0).ToScalar(); tp[3] = Sse.Shuffle(av0, av0, 0b_11_10_01_11).ToScalar(); tp += tstride; } }
unsafe void IConvolver.WriteDestLine(byte *tstart, byte *ostart, int ox, int ow, byte *pmapy, int smapy) { float *op = (float *)ostart; int xc = ox + ow, tstride = smapy; int vcnt = smapy / Vector128 <float> .Count; while (ox < xc) { int lcnt = vcnt; float *tp = (float *)tstart + ox * tstride; float *mp = (float *)pmapy; Vector128 <float> av0; if (Avx.IsSupported && lcnt >= 2) { var ax0 = Vector256 <float> .Zero; for (; lcnt >= 4; lcnt -= 4) { var iv0 = Avx.LoadVector256(tp); var iv1 = Avx.LoadVector256(tp + Vector256 <float> .Count); tp += Vector256 <float> .Count * 2; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count), iv1, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); ax0 = Avx.Add(ax0, Avx.Multiply(iv1, Avx.LoadVector256(mp + Vector256 <float> .Count))); } mp += Vector256 <float> .Count * 2; } if (lcnt >= 2) { lcnt -= 2; var iv0 = Avx.LoadVector256(tp); tp += Vector256 <float> .Count; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); } mp += Vector256 <float> .Count; } av0 = Sse.Add(ax0.GetLower(), ax0.GetUpper()); } else { av0 = Vector128 <float> .Zero; } for (; lcnt != 0; lcnt--) { var iv0 = Sse.LoadVector128(tp); tp += Vector128 <float> .Count; if (Fma.IsSupported) { av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp), iv0, av0); } else { av0 = Sse.Add(av0, Sse.Multiply(iv0, Sse.LoadVector128(mp))); } mp += Vector128 <float> .Count; } *op++ = av0.HorizontalAdd(); ox++; } }
unsafe void IConvolver.WriteDestLine(byte *tstart, byte *ostart, int ox, int ow, byte *pmapy, int smapy) { float *op = (float *)ostart; int xc = ox + ow, tstride = smapy * channels; int vcnt = smapy / Vector128 <float> .Count; while (ox < xc) { int lcnt = vcnt; float *tp = (float *)tstart + ox * tstride; float *mp = (float *)pmapy; Vector128 <float> av0; if (Avx.IsSupported && lcnt >= 2) { var ax0 = Vector256 <float> .Zero; for (; lcnt >= 2; lcnt -= 2) { var iv0 = Avx.LoadVector256(tp); var iv1 = Avx.LoadVector256(tp + Vector256 <float> .Count); var iv2 = Avx.LoadVector256(tp + Vector256 <float> .Count * 2); var iv3 = Avx.LoadVector256(tp + Vector256 <float> .Count * 3); tp += Vector256 <int> .Count * channels; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count), iv1, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 2), iv2, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 3), iv3, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); ax0 = Avx.Add(ax0, Avx.Multiply(iv1, Avx.LoadVector256(mp + Vector256 <float> .Count))); ax0 = Avx.Add(ax0, Avx.Multiply(iv2, Avx.LoadVector256(mp + Vector256 <float> .Count * 2))); ax0 = Avx.Add(ax0, Avx.Multiply(iv3, Avx.LoadVector256(mp + Vector256 <float> .Count * 3))); } mp += Vector256 <float> .Count * channels; } av0 = Sse.Add(ax0.GetLower(), ax0.GetUpper()); } else { av0 = Vector128 <float> .Zero; } for (; lcnt != 0; lcnt--) { var iv0 = Sse.LoadVector128(tp); var iv1 = Sse.LoadVector128(tp + Vector128 <float> .Count); var iv2 = Sse.LoadVector128(tp + Vector128 <float> .Count * 2); var iv3 = Sse.LoadVector128(tp + Vector128 <float> .Count * 3); tp += Vector128 <float> .Count * channels; if (Fma.IsSupported) { av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp), iv0, av0); av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp + Vector128 <float> .Count), iv1, av0); av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp + Vector128 <float> .Count * 2), iv2, av0); av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp + Vector128 <float> .Count * 3), iv3, av0); } else { av0 = Sse.Add(av0, Sse.Multiply(iv0, Sse.LoadVector128(mp))); av0 = Sse.Add(av0, Sse.Multiply(iv1, Sse.LoadVector128(mp + Vector128 <float> .Count))); av0 = Sse.Add(av0, Sse.Multiply(iv2, Sse.LoadVector128(mp + Vector128 <float> .Count * 2))); av0 = Sse.Add(av0, Sse.Multiply(iv3, Sse.LoadVector128(mp + Vector128 <float> .Count * 3))); } mp += Vector128 <float> .Count * channels; } op[0] = av0.ToScalar(); op[1] = Sse.Shuffle(av0, av0, 0b_11_10_01_01).ToScalar(); op[2] = Sse.UnpackHigh(av0, av0).ToScalar(); op[3] = Sse.Shuffle(av0, av0, 0b_11_10_01_11).ToScalar(); op += channels; ox++; } }
unsafe void IConvolver.ConvolveSourceLine(byte *istart, byte *tstart, int cb, byte *mapxstart, int smapx, int smapy) { float *tp = (float *)tstart, tpe = (float *)(tstart + cb); float *pmapx = (float *)mapxstart; int kstride = smapx; int tstride = smapy; int vcnt = smapx / Vector128 <float> .Count; while (tp < tpe) { int ix = *(int *)pmapx++; int lcnt = vcnt; float *ip = (float *)istart + ix; float *mp = pmapx; pmapx += kstride; Vector128 <float> av0; if (Avx.IsSupported && lcnt >= 2) { var ax0 = Vector256 <float> .Zero; for (; lcnt >= 8; lcnt -= 8) { var iv0 = Avx.LoadVector256(ip); var iv1 = Avx.LoadVector256(ip + Vector256 <float> .Count); var iv2 = Avx.LoadVector256(ip + Vector256 <float> .Count * 2); var iv3 = Avx.LoadVector256(ip + Vector256 <float> .Count * 3); ip += Vector256 <float> .Count * 4; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count), iv1, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 2), iv2, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 3), iv3, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); ax0 = Avx.Add(ax0, Avx.Multiply(iv1, Avx.LoadVector256(mp + Vector256 <float> .Count))); ax0 = Avx.Add(ax0, Avx.Multiply(iv2, Avx.LoadVector256(mp + Vector256 <float> .Count * 2))); ax0 = Avx.Add(ax0, Avx.Multiply(iv3, Avx.LoadVector256(mp + Vector256 <float> .Count * 3))); } mp += Vector256 <float> .Count * 4; } if (lcnt >= 6) { lcnt -= 6; var iv0 = Avx.LoadVector256(ip); var iv1 = Avx.LoadVector256(ip + Vector256 <float> .Count); var iv2 = Avx.LoadVector256(ip + Vector256 <float> .Count * 2); ip += Vector256 <float> .Count * 3; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count), iv1, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count * 2), iv2, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); ax0 = Avx.Add(ax0, Avx.Multiply(iv1, Avx.LoadVector256(mp + Vector256 <float> .Count))); ax0 = Avx.Add(ax0, Avx.Multiply(iv2, Avx.LoadVector256(mp + Vector256 <float> .Count * 2))); } mp += Vector256 <float> .Count * 3; } else if (lcnt >= 4) { lcnt -= 4; var iv0 = Avx.LoadVector256(ip); var iv1 = Avx.LoadVector256(ip + Vector256 <float> .Count); ip += Vector256 <float> .Count * 2; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp + Vector256 <float> .Count), iv1, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); ax0 = Avx.Add(ax0, Avx.Multiply(iv1, Avx.LoadVector256(mp + Vector256 <float> .Count))); } mp += Vector256 <float> .Count * 2; } else if (lcnt >= 2) { lcnt -= 2; var iv0 = Avx.LoadVector256(ip); ip += Vector256 <float> .Count; if (Fma.IsSupported) { ax0 = Fma.MultiplyAdd(Avx.LoadVector256(mp), iv0, ax0); } else { ax0 = Avx.Add(ax0, Avx.Multiply(iv0, Avx.LoadVector256(mp))); } mp += Vector256 <float> .Count; } av0 = Sse.Add(ax0.GetLower(), ax0.GetUpper()); } else { av0 = Vector128 <float> .Zero; } for (; lcnt != 0; lcnt--) { var iv0 = Sse.LoadVector128(ip); ip += Vector128 <float> .Count; if (Fma.IsSupported) { av0 = Fma.MultiplyAdd(Sse.LoadVector128(mp), iv0, av0); } else { av0 = Sse.Add(av0, Sse.Multiply(iv0, Sse.LoadVector128(mp))); } mp += Vector128 <float> .Count; } tp[0] = av0.HorizontalAdd(); tp += tstride; } }
public static unsafe float GetScribnerBoardFeetPerAcre(Trees trees) { // for now, assume all trees are of the same species if (trees.Species != FiaCode.PseudotsugaMenziesii) { throw new NotSupportedException(); } if (trees.Units != Units.English) { throw new NotSupportedException(); } // Douglas-fir #if DEBUG Vector128 <float> v6p8 = AvxExtensions.BroadcastScalarToVector128(6.8F); Vector128 <float> v10k = AvxExtensions.BroadcastScalarToVector128(10.0F * 1000.0F); #endif // constants Vector128 <float> forestersEnglish = AvxExtensions.BroadcastScalarToVector128(Constant.ForestersEnglish); Vector128 <float> one = AvxExtensions.BroadcastScalarToVector128(1.0F); Vector128 <float> six = AvxExtensions.BroadcastScalarToVector128(6.0F); Vector128 <float> vm3p21809 = AvxExtensions.BroadcastScalarToVector128(-3.21809F); // b4 Vector128 <float> v0p04948 = AvxExtensions.BroadcastScalarToVector128(0.04948F); Vector128 <float> vm0p15664 = AvxExtensions.BroadcastScalarToVector128(-0.15664F); Vector128 <float> v2p02132 = AvxExtensions.BroadcastScalarToVector128(2.02132F); Vector128 <float> v1p63408 = AvxExtensions.BroadcastScalarToVector128(1.63408F); Vector128 <float> vm0p16184 = AvxExtensions.BroadcastScalarToVector128(-0.16184F); Vector128 <float> v1p033 = AvxExtensions.BroadcastScalarToVector128(1.033F); Vector128 <float> v1p382937 = AvxExtensions.BroadcastScalarToVector128(1.382937F); Vector128 <float> vm0p4015292 = AvxExtensions.BroadcastScalarToVector128(-0.4015292F); Vector128 <float> v0p087266 = AvxExtensions.BroadcastScalarToVector128(0.087266F); Vector128 <float> vm0p174533 = AvxExtensions.BroadcastScalarToVector128(-0.174533F); Vector128 <float> vm0p6896598794 = AvxExtensions.BroadcastScalarToVector128(-0.6896598794F); // rc6-rs632 Vector128 <float> v0p993 = AvxExtensions.BroadcastScalarToVector128(0.993F); Vector128 <float> v0p174439 = AvxExtensions.BroadcastScalarToVector128(0.174439F); Vector128 <float> v0p117594 = AvxExtensions.BroadcastScalarToVector128(0.117594F); Vector128 <float> vm8p210585 = AvxExtensions.BroadcastScalarToVector128(-8.210585F); Vector128 <float> v0p236693 = AvxExtensions.BroadcastScalarToVector128(0.236693F); Vector128 <float> v0p00001345 = AvxExtensions.BroadcastScalarToVector128(0.00001345F); Vector128 <float> v0p00001937 = AvxExtensions.BroadcastScalarToVector128(0.00001937F); Vector128 <float> v1p001491 = AvxExtensions.BroadcastScalarToVector128(1.001491F); Vector128 <float> vm6p924097 = AvxExtensions.BroadcastScalarToVector128(-6.924097F); Vector128 <float> v0p912733 = AvxExtensions.BroadcastScalarToVector128(0.912733F); Vector128 <float> v0p00001351 = AvxExtensions.BroadcastScalarToVector128(0.00001351F); fixed(float *dbh = &trees.Dbh[0], expansionFactors = &trees.LiveExpansionFactor[0], height = &trees.Height[0]) { Vector128 <float> standBoardFeetPerAcre = Vector128 <float> .Zero; for (int treeIndex = 0; treeIndex < trees.Count; treeIndex += Constant.Simd128x4.Width) { Vector128 <float> dbhInInches = Avx.LoadVector128(dbh + treeIndex); Vector128 <float> heightInFeet = Avx.LoadVector128(height + treeIndex); Vector128 <float> logDbhInInches = MathV.Log10(dbhInInches); Vector128 <float> logHeightInFeet = MathV.Log10(heightInFeet); // FiaCode.PseudotsugaMenziesii => -3.21809F + 0.04948F * logHeightInFeet * logDbhInInches - 0.15664F * logDbhInInches * logDbhInInches + // 2.02132F * logDbhInInches + 1.63408F * logHeightInFeet - 0.16184F * logHeightInFeet * logHeightInFeet, Vector128 <float> cvtsl = Avx.Add(vm3p21809, Avx.Multiply(v0p04948, Avx.Multiply(logHeightInFeet, logDbhInInches))); cvtsl = Avx.Add(cvtsl, Avx.Multiply(vm0p15664, Avx.Multiply(logDbhInInches, logDbhInInches))); cvtsl = Avx.Add(cvtsl, Avx.Multiply(v2p02132, logDbhInInches)); cvtsl = Avx.Add(cvtsl, Avx.Multiply(v1p63408, logHeightInFeet)); cvtsl = Avx.Add(cvtsl, Avx.Multiply(vm0p16184, Avx.Multiply(logHeightInFeet, logHeightInFeet))); Vector128 <float> cubicFeet = MathV.Exp10(cvtsl); Vector128 <float> dbhSquared = Avx.Multiply(dbhInInches, dbhInInches); // could be consolidated by merging other scaling constants with Forester's constant for basal area Vector128 <float> basalAreaInSquareFeet = Avx.Multiply(forestersEnglish, dbhSquared); // b4 = cubicFeet / (1.033F * (1.0F + 1.382937F * MathV.Exp(-4.015292F * dbhInInches / 10.0F)) * (basalAreaInSquareFeet + 0.087266F) - 0.174533F); Vector128 <float> b4 = Avx.Divide(cubicFeet, Avx.Add(Avx.Multiply(v1p033, Avx.Multiply(Avx.Add(one, Avx.Multiply(v1p382937, MathV.Exp(Avx.Multiply(vm0p4015292, dbhInInches)))), Avx.Add(basalAreaInSquareFeet, v0p087266))), vm0p174533)); Vector128 <float> cv4 = Avx.Multiply(b4, Avx.Subtract(basalAreaInSquareFeet, v0p087266)); // conversion to Scribner volumes for 32 foot trees // Waddell 2014:32 // rc6 = 0.993F * (1.0F - MathF.Pow(0.62F, dbhInInches - 6.0F)); Vector128 <float> rc6 = Avx.Multiply(v0p993, Avx.Subtract(one, MathV.Exp(Avx.Multiply(vm0p6896598794, Avx.Subtract(dbhInInches, six))))); // log2(0.62) = -0.6896598794 Vector128 <float> cv6 = Avx.Multiply(rc6, cv4); Vector128 <float> logB4 = MathV.Log10(b4); // float rs616 = MathF.Pow(10.0F, 0.174439F + 0.117594F * logDbhInInches * logB4 - 8.210585F / (dbhInInches * dbhInInches) + 0.236693F * logB4 - 0.00001345F * b4 * b4 - 0.00001937F * dbhInInches * dbhInInches); Vector128 <float> rs616l = Avx.Add(v0p174439, Avx.Multiply(v0p117594, Avx.Multiply(logDbhInInches, logB4))); rs616l = Avx.Add(rs616l, Avx.Divide(vm8p210585, dbhSquared)); rs616l = Avx.Add(rs616l, Avx.Multiply(v0p236693, logB4)); rs616l = Avx.Subtract(rs616l, Avx.Multiply(v0p00001345, Avx.Multiply(b4, b4))); rs616l = Avx.Subtract(rs616l, Avx.Multiply(v0p00001937, dbhSquared)); Vector128 <float> rs616 = MathV.Exp10(rs616l); Vector128 <float> sv616 = Avx.Multiply(rs616, cv6); // Scribner board foot volume to a 6 inch top for 16 foot logs // float rs632 = 1.001491F - 6.924097F / tarif + 0.00001351F * dbhInInches * dbhInInches; Vector128 <float> rs632 = Avx.Add(v1p001491, Avx.Divide(vm6p924097, Avx.Multiply(v0p912733, b4))); rs632 = Avx.Add(rs632, Avx.Multiply(v0p00001351, dbhSquared)); Vector128 <float> zeroVolumeMask = Avx.CompareLessThanOrEqual(dbhInInches, six); Vector128 <float> sv632 = Avx.Multiply(rs632, sv616); // Scribner board foot volume to a 6 inch top for 32 foot logs sv632 = Avx.BlendVariable(sv632, Vector128 <float> .Zero, zeroVolumeMask); #if DEBUG DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(rc6, Vector128 <float> .Zero, zeroVolumeMask), Vector128 <float> .Zero)); DebugV.Assert(Avx.CompareLessThanOrEqual(rc6, one)); DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(rs616, one, zeroVolumeMask), one)); DebugV.Assert(Avx.CompareLessThanOrEqual(Avx.BlendVariable(rs616, Vector128 <float> .Zero, zeroVolumeMask), v6p8)); DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(rs632, Vector128 <float> .Zero, zeroVolumeMask), Vector128 <float> .Zero)); DebugV.Assert(Avx.CompareLessThanOrEqual(Avx.BlendVariable(rs632, Vector128 <float> .Zero, zeroVolumeMask), one)); DebugV.Assert(Avx.CompareGreaterThanOrEqual(Avx.BlendVariable(sv632, Vector128 <float> .Zero, zeroVolumeMask), Vector128 <float> .Zero)); DebugV.Assert(Avx.CompareLessThanOrEqual(Avx.BlendVariable(sv632, Vector128 <float> .Zero, zeroVolumeMask), v10k)); #endif Vector128 <float> expansionFactor = Avx.LoadVector128(expansionFactors + treeIndex); standBoardFeetPerAcre = Avx.Add(standBoardFeetPerAcre, Avx.Multiply(expansionFactor, sv632)); } standBoardFeetPerAcre = Avx.HorizontalAdd(standBoardFeetPerAcre, standBoardFeetPerAcre); standBoardFeetPerAcre = Avx.HorizontalAdd(standBoardFeetPerAcre, standBoardFeetPerAcre); return(standBoardFeetPerAcre.ToScalar()); } }
public static unsafe ComplexFloat[] Kernel32(ComplexFloat[] i, ref ComplexFloat[][] omegas) { ComplexFloat[] result = new ComplexFloat[32]; ComplexFloat[] tmp = new ComplexFloat[48]; ComplexFloat ami = i[0] - i[8]; ComplexFloat api = i[0] + i[8]; ComplexFloat fmn = i[5] - i[13]; ComplexFloat fpn = i[5] + i[13]; ComplexFloat xami = i[16] - i[24]; ComplexFloat xapi = i[16] + i[24]; ComplexFloat xfmn = i[21] - i[29]; ComplexFloat xfpn = i[21] + i[29]; tmp[0] = api + i[2] + i[4] + i[6] + i[10] + i[12] + i[14]; tmp[1] = ami + (i[2] - i[10] + (i[6] - i[14]).TimesMinusI()) * omegas[3][1] + (i[4] - i[12]).TimesMinusI(); tmp[2] = api - i[4] - i[12] + (i[2] - i[6] + i[10] - i[14]).TimesMinusI(); tmp[3] = ami - (i[4] - i[12]).TimesMinusI() - (i[10] - i[2] + (i[6] - i[14]).TimesMinusI()) * omegas[3][3]; tmp[4] = api - i[2] + i[4] - i[6] - i[10] + i[12] - i[14]; tmp[5] = ami - (i[2] - i[10] + (i[6] - i[14]).TimesMinusI()) * omegas[3][1] + (i[4] - i[12]).TimesMinusI(); tmp[6] = api - i[4] - i[12] - (i[2] - i[6] + i[10] - i[14]).TimesMinusI(); tmp[7] = ami - (i[4] - i[12]).TimesMinusI() + (i[10] - i[2] + (i[6] - i[14]).TimesMinusI()).TimesMinusI(); tmp[8] = i[1] + i[3] + fpn + i[7] + i[9] + i[11] + i[15]; tmp[9] = omegas[4][1] * (i[1] - i[9] + (i[3] - i[11] + (i[7] - i[15]).TimesMinusI()) * omegas[3][1] + (fmn).TimesMinusI()); tmp[10] = omegas[4][2] * ((i[3] - i[7] + i[11] - i[15]).TimesMinusI() + i[1] - fpn + i[9]); tmp[11] = omegas[4][3] * (omegas[3][3] * (i[11] - i[3] + (i[7] - i[15]).TimesMinusI()) - i[1] + i[9] + (fmn).TimesMinusI()); tmp[12] = (i[1] - i[3] + fpn - i[7] + i[9] - i[11] - i[15]).TimesMinusI(); tmp[13] = (i[1] - i[9] - (i[3] - i[11] + (i[7] - i[15]).TimesMinusI()) * omegas[3][1] + (fmn).TimesMinusI()) * omegas[4][5]; tmp[14] = omegas[4][6] * ((i[3] - i[7] + i[11] - i[15]).TimesMinusI() - i[1] + fpn - i[9]); tmp[15] = omegas[4][7] * ((i[11] - i[3] + (i[7] - i[15]).TimesMinusI()).TimesMinusI() + i[1] - i[9] - (fmn).TimesMinusI()); tmp[16] = xapi + i[18] + i[20] + i[22] + i[28] + i[26] + i[30]; tmp[17] = xami + (i[18] - i[26] + (i[22] - i[30]).TimesMinusI()) * omegas[3][1] + (i[20] - i[28]).TimesMinusI(); tmp[18] = xapi - i[20] - i[28] + (i[18] - i[22] + i[26] - i[30]).TimesMinusI(); tmp[19] = xami - (i[20] - i[28]).TimesMinusI() - (i[26] - i[18] + (i[22] - i[30]).TimesMinusI()) * omegas[3][3]; tmp[20] = xapi - i[28] + i[20] - i[22] - i[26] + i[28] - i[30]; tmp[21] = xami - (i[28] - i[26] + (i[22] - i[30]).TimesMinusI()) * omegas[3][1] + (i[20] - i[22]).TimesMinusI(); tmp[22] = xapi - i[20] - i[28] - (i[18] - i[22] + i[26] - i[30]).TimesMinusI(); tmp[23] = xami - (i[20] - i[28]).TimesMinusI() + (i[26] - i[18] + (i[22] - i[30]).TimesMinusI()).TimesMinusI(); tmp[24] = i[17] + i[19] + xfpn + i[23] + i[25] + i[27] + i[31]; tmp[25] = omegas[4][1] * (i[17] - i[25] + (i[19] - i[27] + (i[23] - i[31]).TimesMinusI()) * omegas[3][1] + (xfmn).TimesMinusI()); tmp[26] = omegas[4][2] * ((i[19] - i[23] + i[27] - i[31]).TimesMinusI() + i[17] - xfpn + i[25]); tmp[27] = omegas[4][3] * (omegas[3][3] * (i[27] - i[19] + (i[23] - i[31]).TimesMinusI()) - i[17] + i[25] + (xfmn).TimesMinusI()); tmp[28] = (i[17] - i[19] + xfpn - i[23] + i[25] - i[27] - i[31]).TimesMinusI(); tmp[29] = (i[17] - i[25] - (i[19] - i[27] + (i[23] - i[31]).TimesMinusI()) * omegas[3][1] + (xfmn).TimesMinusI()) * omegas[4][5]; tmp[30] = omegas[4][6] * ((i[19] - i[23] + i[27] - i[31]).TimesMinusI() - i[17] + xfpn - i[25]); tmp[31] = omegas[4][7] * ((i[27] - i[19] + (i[23] - i[31]).TimesMinusI()).TimesMinusI() + i[17] - i[25] - (xfmn).TimesMinusI()); //32 complex floats = 64 floats //Divided into 4 parts A, B, C, D = each containing 8 complex floats, so 16 floats //AVX takes 8 floats at once, so will calculate in halves of those parts //Tmp will ocntain 6 octets fixed(ComplexFloat *entry = result, om5 = omegas[5], t = tmp) { Vector256 <float> a; Vector256 <float> b; Vector256 <float> bSwap; Vector256 <float> aIm; Vector256 <float> aRe; Vector256 <float> aIM_bSwap; float *partA = (float *)entry; float *partB = partA + 16; float *partC = partA + 32; float *partD = partA + 48; float *omPart1 = (float *)om5; float *omPart2 = omPart1 + 16; float *tmpPart1 = (float *)t; float *tmpPart2 = tmpPart1 + 16; float *tmpPart3 = tmpPart1 + 32; float *tmpPart4 = tmpPart1 + 48; float *tmpPart5 = tmpPart1 + 64; float *tmpPart6 = tmpPart1 + 80; //Summing up result Avx2.Store(partA, Avx2.Add(Avx2.LoadVector256(tmpPart1), Avx2.LoadVector256(tmpPart2))); Avx2.Store(partA + 8, Avx2.Add(Avx2.LoadVector256(tmpPart1 + 8), Avx2.LoadVector256(tmpPart2 + 8))); Avx2.Store(partB, Avx2.Subtract(Avx2.LoadVector256(tmpPart1), Avx2.LoadVector256(tmpPart2))); Avx2.Store(partB + 8, Avx2.Subtract(Avx2.LoadVector256(tmpPart1 + 8), Avx2.LoadVector256(tmpPart2 + 8))); Avx2.Store(partC, Avx2.Add(Avx2.LoadVector256(tmpPart3), Avx2.LoadVector256(tmpPart4))); Avx2.Store(partC + 8, Avx2.Add(Avx2.LoadVector256(tmpPart3 + 8), Avx2.LoadVector256(tmpPart4 + 8))); Avx2.Store(partD, Avx2.Subtract(Avx2.LoadVector256(tmpPart3), Avx2.LoadVector256(tmpPart4))); Avx2.Store(partD + 8, Avx2.Subtract(Avx2.LoadVector256(tmpPart3 + 8), Avx2.LoadVector256(tmpPart4 + 8))); //------------------------------------------------------------------------------------------------------------- //First part of each 8 complex part //Tmp[0] = A + B Avx2.Store(tmpPart1, Avx2.Add(Avx2.LoadVector256(partA), Avx2.LoadVector256(partB))); //Tmp[1] = A - B Avx2.Store(tmpPart2, Avx2.Subtract(Avx2.LoadVector256(partA), Avx2.LoadVector256(partB))); //Tmp[2] = C + D Avx2.Store(tmpPart3, Avx2.Add(Avx2.LoadVector256(partC), Avx2.LoadVector256(partD))); //Tmp[3] = C - D Avx2.Store(tmpPart4, Avx2.Subtract(Avx2.LoadVector256(partC), Avx2.LoadVector256(partD))); //Complex multiplication based on: https://www.researchgate.net/figure/Vectorized-complex-multiplication-using-AVX-2_fig2_337532904 //Tmp[4] = omega * (C+D) a = Avx2.LoadVector256(tmpPart3); b = Avx2.LoadVector256(omPart1); bSwap = Avx2.Shuffle(b, b, imm8bShuffle); aIm = Avx2.Shuffle(a, a, imm8aImShuffle); aRe = Avx2.Shuffle(a, a, imm8aReShuffle); aIM_bSwap = Avx.Multiply(aIm, bSwap); Avx2.Store(tmpPart5, Fma.MultiplyAddSubtract(aRe, b, aIM_bSwap)); //Tmp[4] = omega * (C-D) a = Avx2.LoadVector256(tmpPart4); b = Avx2.LoadVector256(omPart2); bSwap = Avx2.Shuffle(b, b, imm8bShuffle); aIm = Avx2.Shuffle(a, a, imm8aImShuffle); aRe = Avx2.Shuffle(a, a, imm8aReShuffle); aIM_bSwap = Avx.Multiply(aIm, bSwap); Avx2.Store(tmpPart6, Fma.MultiplyAddSubtract(aRe, b, aIM_bSwap)); //(A+B) + (C+D) Avx2.Store(partA, Avx.Add(Avx.LoadVector256(tmpPart1), Avx.LoadVector256(tmpPart3))); //(A-B) + (C-D) Avx2.Store(partB, Avx.Add(Avx.LoadVector256(tmpPart2), Avx.LoadVector256(tmpPart4))); //(A+B) + omega*(C+D) Avx2.Store(partC, Avx.Add(Avx.LoadVector256(tmpPart1), Avx.LoadVector256(tmpPart5))); //(A-B) + omega*(C-D) Avx2.Store(partD, Avx.Add(Avx.LoadVector256(tmpPart2), Avx.LoadVector256(tmpPart6))); //-------------------------------------------------------------------------------------------------------------- //Second part of each 8 complex part //Tmp[0] = A + B Avx2.Store(tmpPart1, Avx2.Add(Avx2.LoadVector256(partA + 8), Avx2.LoadVector256(partB + 8))); //Tmp[1] = A - B Avx2.Store(tmpPart2, Avx2.Subtract(Avx2.LoadVector256(partA + 8), Avx2.LoadVector256(partB + 8))); //Tmp[2] = C + D Avx2.Store(tmpPart3, Avx2.Add(Avx2.LoadVector256(partC + 8), Avx2.LoadVector256(partD + 8))); //Tmp[2] = C - D Avx2.Store(tmpPart4, Avx2.Subtract(Avx2.LoadVector256(partC + 8), Avx2.LoadVector256(partD + 8))); //Complex multiplication based on: https://www.researchgate.net/figure/Vectorized-complex-multiplication-using-AVX-2_fig2_337532904 //Tmp[4] = omega * (C+D) a = Avx2.LoadVector256(tmpPart3); b = Avx2.LoadVector256(omPart1 + 8); bSwap = Avx2.Shuffle(b, b, imm8bShuffle); aIm = Avx2.Shuffle(a, a, imm8aImShuffle); aRe = Avx2.Shuffle(a, a, imm8aReShuffle); aIM_bSwap = Avx.Multiply(aIm, bSwap); Avx2.Store(tmpPart5, Fma.MultiplyAddSubtract(aRe, b, aIM_bSwap)); //Tmp[4] = omega * (C-D) a = Avx2.LoadVector256(tmpPart4); b = Avx2.LoadVector256(omPart2 + 8); bSwap = Avx2.Shuffle(b, b, imm8bShuffle); aIm = Avx2.Shuffle(a, a, imm8aImShuffle); aRe = Avx2.Shuffle(a, a, imm8aReShuffle); aIM_bSwap = Avx.Multiply(aIm, bSwap); Avx2.Store(tmpPart6, Fma.MultiplyAddSubtract(aRe, b, aIM_bSwap)); //(A+B) + (C+D) Avx2.Store(partA + 8, Avx.Add(Avx.LoadVector256(tmpPart1), Avx.LoadVector256(tmpPart3))); //(A-B) + (C-D) Avx2.Store(partB + 8, Avx.Add(Avx.LoadVector256(tmpPart2), Avx.LoadVector256(tmpPart4))); //(A+B) + omega*(C+D) Avx2.Store(partC + 8, Avx.Add(Avx.LoadVector256(tmpPart1), Avx.LoadVector256(tmpPart5))); //(A-B) + omega*(C-D) Avx2.Store(partD + 8, Avx.Add(Avx.LoadVector256(tmpPart2), Avx.LoadVector256(tmpPart6))); } return(result); //ComplexFloat[] result = new ComplexFloat[32]; //ArraySegment<ComplexFloat> partA = new ArraySegment<ComplexFloat>(i, 0, 16); //ArraySegment<ComplexFloat> partB = new ArraySegment<ComplexFloat>(i, 16, 16); //Kernel16(partA.ToArray(), ref omegas).CopyTo(result, 0); //Kernel16(partA.ToArray(), ref omegas).CopyTo(result, 16); //return result; }
public static unsafe RtMatrix operator *(RtMatrix value1, RtMatrix value2) { if (Avx2.IsSupported && useIntrinsics) { var row = Avx.LoadVector256(&value1.M11); Avx.Store(&value1.M11, Avx.Add(Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0x00), Avx.LoadVector256(&value2.M11)), Avx.Multiply(Avx2.Permute4x64(row, 0x55), Avx.LoadVector256(&value2.M21))), Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0xAA), Avx.LoadVector256(&value2.M31)), Avx.Multiply(Avx2.Permute4x64(row, 0xFF), Avx.LoadVector256(&value2.M41))))); // 0x00 is _MM_SHUFFLE(0,0,0,0), 0x55 is _MM_SHUFFLE(1,1,1,1), etc. // TODO: Replace with a method once it's added to the API. row = Avx.LoadVector256(&value1.M21); Avx.Store(&value1.M21, Avx.Add(Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0x00), Avx.LoadVector256(&value2.M11)), Avx.Multiply(Avx2.Permute4x64(row, 0x55), Avx.LoadVector256(&value2.M21))), Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0xAA), Avx.LoadVector256(&value2.M31)), Avx.Multiply(Avx2.Permute4x64(row, 0xFF), Avx.LoadVector256(&value2.M41))))); row = Avx.LoadVector256(&value1.M31); Avx.Store(&value1.M31, Avx.Add(Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0x00), Avx.LoadVector256(&value2.M11)), Avx.Multiply(Avx2.Permute4x64(row, 0x55), Avx.LoadVector256(&value2.M21))), Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0xAA), Avx.LoadVector256(&value2.M31)), Avx.Multiply(Avx2.Permute4x64(row, 0xFF), Avx.LoadVector256(&value2.M41))))); row = Avx.LoadVector256(&value1.M41); Avx.Store(&value1.M41, Avx.Add(Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0x00), Avx.LoadVector256(&value2.M11)), Avx.Multiply(Avx2.Permute4x64(row, 0x55), Avx.LoadVector256(&value2.M21))), Avx.Add(Avx.Multiply(Avx2.Permute4x64(row, 0xAA), Avx.LoadVector256(&value2.M31)), Avx.Multiply(Avx2.Permute4x64(row, 0xFF), Avx.LoadVector256(&value2.M41))))); return(value1); } RtMatrix m; // First row m.M11 = value1.M11 * value2.M11 + value1.M12 * value2.M21 + value1.M13 * value2.M31 + value1.M14 * value2.M41; m.M12 = value1.M11 * value2.M12 + value1.M12 * value2.M22 + value1.M13 * value2.M32 + value1.M14 * value2.M42; m.M13 = value1.M11 * value2.M13 + value1.M12 * value2.M23 + value1.M13 * value2.M33 + value1.M14 * value2.M43; m.M14 = value1.M11 * value2.M14 + value1.M12 * value2.M24 + value1.M13 * value2.M34 + value1.M14 * value2.M44; // Second row m.M21 = value1.M21 * value2.M11 + value1.M22 * value2.M21 + value1.M23 * value2.M31 + value1.M24 * value2.M41; m.M22 = value1.M21 * value2.M12 + value1.M22 * value2.M22 + value1.M23 * value2.M32 + value1.M24 * value2.M42; m.M23 = value1.M21 * value2.M13 + value1.M22 * value2.M23 + value1.M23 * value2.M33 + value1.M24 * value2.M43; m.M24 = value1.M21 * value2.M14 + value1.M22 * value2.M24 + value1.M23 * value2.M34 + value1.M24 * value2.M44; // Third row m.M31 = value1.M31 * value2.M11 + value1.M32 * value2.M21 + value1.M33 * value2.M31 + value1.M34 * value2.M41; m.M32 = value1.M31 * value2.M12 + value1.M32 * value2.M22 + value1.M33 * value2.M32 + value1.M34 * value2.M42; m.M33 = value1.M31 * value2.M13 + value1.M32 * value2.M23 + value1.M33 * value2.M33 + value1.M34 * value2.M43; m.M34 = value1.M31 * value2.M14 + value1.M32 * value2.M24 + value1.M33 * value2.M34 + value1.M34 * value2.M44; // Fourth row m.M41 = value1.M41 * value2.M11 + value1.M42 * value2.M21 + value1.M43 * value2.M31 + value1.M44 * value2.M41; m.M42 = value1.M41 * value2.M12 + value1.M42 * value2.M22 + value1.M43 * value2.M32 + value1.M44 * value2.M42; m.M43 = value1.M41 * value2.M13 + value1.M42 * value2.M23 + value1.M43 * value2.M33 + value1.M44 * value2.M43; m.M44 = value1.M41 * value2.M14 + value1.M42 * value2.M24 + value1.M43 * value2.M34 + value1.M44 * value2.M44; return(m); }
private static unsafe double[] BilinearInterpol_AVX( double[] x, double[] A, double minXA, double maxXA, double[] B, double minXB, double maxXB, double weightB) { double[] z = new double[outputVectorSize]; fixed(double *pX = &x[0], pA = &A[0], pB = &B[0], pZ = &z[0]) { Vector256 <double> vWeightB = Vector256.Create(weightB); Vector256 <double> vWeightA = Vector256.Create(1 - weightB); Vector256 <double> vMinXA = Vector256.Create(minXA); Vector256 <double> vMaxXA = Vector256.Create(maxXA); Vector256 <double> vMinXB = Vector256.Create(minXB); Vector256 <double> vMaxXB = Vector256.Create(maxXB); double deltaA = (maxXA - minXA) / (double)(A.Length - 1); double deltaB = (maxXB - minXB) / (double)(B.Length - 1); Vector256 <double> vDeltaA = Vector256.Create(deltaA); Vector256 <double> vDeltaB = Vector256.Create(deltaB); double invDeltaA = 1.0 / deltaA; double invDeltaB = 1.0 / deltaB; Vector256 <double> vInvDeltaA = Vector256.Create(invDeltaA); Vector256 <double> vInvDeltaB = Vector256.Create(invDeltaB); Vector128 <int> ALengthMinusOne = Vector128.Create(A.Length - 1); Vector128 <int> BLengthMinusOne = Vector128.Create(B.Length - 1); Vector128 <int> One = Vector128.Create(1); for (var i = 0; i < x.Length; i += Vector256 <double> .Count) { Vector256 <double> currentX = Avx.LoadVector256(pX + i); // Determine the largest a, such that A[i] = f(xA) and xA <= x[i]. // This involves casting from double to int; here we use a Vector conversion. Vector256 <double> aDouble = Avx.Multiply(Avx.Subtract(currentX, vMinXA), vInvDeltaA); Vector128 <int> a = Avx.ConvertToVector128Int32WithTruncation(aDouble); a = Sse41.Min(Sse41.Max(a, Vector128 <int> .Zero), ALengthMinusOne); Vector128 <int> aPlusOne = Sse41.Min(Sse2.Add(a, One), ALengthMinusOne); // Now, get the reference input, xA, for our index a. // This involves casting from int to double. Vector256 <double> xA = Avx.Add(Avx.Multiply(Avx.ConvertToVector256Double(a), vDeltaA), vMinXA); // Now, compute the lambda for our A reference point. Vector256 <double> currentXNormA = Avx.Max(vMinXA, Avx.Min(currentX, vMaxXA)); Vector256 <double> lambdaA = Avx.Multiply(Avx.Subtract(currentXNormA, xA), vInvDeltaA); // Now, we need to load up our reference points using Vector Gather operations. Vector256 <double> AVector = Avx2.GatherVector256(pA, a, 8); Vector256 <double> AVectorPlusOne = Avx2.GatherVector256(pA, aPlusOne, 8); // Now, do the all of the above for our B reference point. Vector256 <double> bDouble = Avx.Multiply(Avx.Subtract(currentX, vMinXB), vInvDeltaB); Vector128 <int> b = Avx.ConvertToVector128Int32WithTruncation(bDouble); b = Sse41.Min(Sse41.Max(b, Vector128 <int> .Zero), BLengthMinusOne); Vector128 <int> bPlusOne = Sse41.Min(Sse2.Add(b, One), BLengthMinusOne); Vector256 <double> xB = Avx.Add(Avx.Multiply(Avx.ConvertToVector256Double(b), vDeltaB), vMinXB); Vector256 <double> currentXNormB = Avx.Max(vMinXB, Avx.Min(currentX, vMaxXB)); Vector256 <double> lambdaB = Avx.Multiply(Avx.Subtract(currentXNormB, xB), vInvDeltaB); Vector256 <double> BVector = Avx2.GatherVector256(pB, b, 8); Vector256 <double> BVectorPlusOne = Avx2.GatherVector256(pB, bPlusOne, 8); Vector256 <double> newZ = Avx.Add(Avx.Multiply(vWeightA, Avx.Add(AVector, Avx.Multiply(lambdaA, Avx.Subtract(AVectorPlusOne, AVector)))), Avx.Multiply(vWeightB, Avx.Add(BVector, Avx.Multiply(lambdaB, Avx.Subtract(BVectorPlusOne, BVector))))); Avx.Store(pZ + i, newZ); } } return(z); }
public Intro() { var middleVector = Vector128.Create(1.0f); // middleVector = <1,1,1,1> middleVector = Vector128.CreateScalar(-1.0f); // middleVector = <-1,0,0,0> var floatBytes = Vector64.AsByte(Vector64.Create(1.0f, -1.0f)); // floatBytes = <0, 0, 128, 63, 0, 0, 128, 191> if (Avx.IsSupported) { var left = Vector256.Create(-2.5f); // <-2.5, -2.5, -2.5, -2.5, -2.5, -2.5, -2.5, -2.5> var right = Vector256.Create(5.0f); // <5, 5, 5, 5, 5, 5, 5, 5> Vector256 <float> result = Avx.AddSubtract(left, right); // result = <-7.5, 2.5, -7.5, 2.5, -7.5, 2.5, -7.5, 2.5>xit left = Vector256.Create(-1.0f, -2.0f, -3.0f, -4.0f, -50.0f, -60.0f, -70.0f, -80.0f); right = Vector256.Create(0.0f, 2.0f, 3.0f, 4.0f, 50.0f, 60.0f, 70.0f, 80.0f); result = Avx.UnpackHigh(left, right); // result = <-3, 3, -4, 4, -70, 70, -80, 80> result = Avx.UnpackLow(left, right); // result = <-1, 1, -2, 2, -50, 50, -60, 60> result = Avx.DotProduct(left, right, 0b1111_0001); // result = <-30, 0, 0, 0, -17400, 0, 0, 0> bool testResult = Avx.TestC(left, right); // testResult = true testResult = Avx.TestC(right, left); // testResult = false Vector256 <float> result1 = Avx.Divide(left, right); var plusOne = Vector256.Create(1.0f); result = Avx.Compare(right, result1, FloatComparisonMode.OrderedGreaterThanNonSignaling); result = Avx.Compare(right, result1, FloatComparisonMode.UnorderedNotLessThanNonSignaling); left = Vector256.Create(0.0f, 3.0f, -3.0f, 4.0f, -50.0f, 60.0f, -70.0f, 80.0f); right = Vector256.Create(0.0f, 2.0f, 3.0f, 2.0f, 50.0f, -60.0f, 70.0f, -80.0f); Vector256 <float> nanInFirstPosition = Avx.Divide(left, right); left = Vector256.Create(1.1f, 3.3333333f, -3.0f, 4.22f, -50.0f, 60.0f, -70.0f, 80.0f); Vector256 <float> InfInFirstPosition = Avx.Divide(left, right); left = Vector256.Create(-1.1f, 3.0f, 1.0f / 3.0f, MathF.PI, -50.0f, 60.0f, -70.0f, 80.0f); right = Vector256.Create(0.0f, 2.0f, 3.1f, 2.0f, 50.0f, -60.0f, 70.0f, -80.0f); Vector256 <float> compareResult = Avx.Compare(left, right, FloatComparisonMode.OrderedGreaterThanNonSignaling); // compareResult = <0, NaN, 0, NaN, 0, NaN, 0, NaN> Vector256 <float> mixed = Avx.BlendVariable(left, right, compareResult); // mixed = <-1, 2, -3, 2, -50, -60, -70, -80> //left = Vector256.Create(-1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f, -1.0f, 1.0f); //right = Vector256.Create(1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f); Vector256 <float> other = right = Vector256.Create(0.0f, 2.0f, 3.0f, 2.0f, 50.0f, -60.0f, 70.0f, -80.0f); bool bRes = Avx.TestZ(plusOne, compareResult); bool bRes2 = Avx.TestC(plusOne, compareResult); bool allTrue = !Avx.TestZ(compareResult, compareResult); compareResult = Avx.Compare(nanInFirstPosition, right, FloatComparisonMode.OrderedEqualNonSignaling); // compareResult = <0, NaN, 0, NaN, 0, NaN, 0, NaN> compareResult = Avx.Compare(nanInFirstPosition, right, FloatComparisonMode.UnorderedEqualNonSignaling); compareResult = Avx.Compare(InfInFirstPosition, right, FloatComparisonMode.UnorderedNotLessThanOrEqualNonSignaling); compareResult = Avx.Compare(InfInFirstPosition, right, FloatComparisonMode.OrderedGreaterThanNonSignaling); var left128 = Vector128.Create(1.0f, 2.0f, 3.0f, 4.0f); var right128 = Vector128.Create(2.0f, 3.0f, 4.0f, 5.0f); Vector128 <float> compResult128 = Sse.CompareGreaterThan(left128, right128); // compResult128 = <0, 0, 0, 0> int res = Avx.MoveMask(compareResult); if (Fma.IsSupported) { Vector256 <float> resultFma = Fma.MultiplyAdd(left, right, other); // = left * right + other for each element resultFma = Fma.MultiplyAddNegated(left, right, other); // = -(left * right + other) for each element resultFma = Fma.MultiplySubtract(left, right, other); // = left * right - other for each element Fma.MultiplyAddSubtract(left, right, other); // even elements (0, 2, ...) like MultiplyAdd, odd elements like MultiplySubtract } result = Avx.DotProduct(left, right, 0b1010_0001); // result = <-20, 0, 0, 0, -10000, 0, 0, 0> result = Avx.Floor(left); // result = <-3, -3, -3, -3, -3, -3, -3, -3> result = Avx.Add(left, right); // result = <2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5> result = Avx.Ceiling(left); // result = <-2, -2, -2, -2, -2, -2, -2, -2> result = Avx.Multiply(left, right); // result = <-12.5, -12.5, -12.5, -12.5, -12.5, -12.5, -12.5, -12.5> result = Avx.HorizontalAdd(left, right); // result = <-5, -5, 10, 10, -5, -5, 10, 10> result = Avx.HorizontalSubtract(left, right); // result = <0, 0, 0, 0, 0, 0, 0, 0> double[] someDoubles = new double[] { 1.0, 3.0, -2.5, 7.5, 10.8, 0.33333 }; double[] someOtherDoubles = new double[] { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 }; double[] someResult = new double[someDoubles.Length]; float[] someFloats = new float[] { 1, 2, 3, 4, 10, 20, 30, 40, 0 }; float[] someOtherFloats = new float[] { 1, 1, 1, 1, 1, 1, 1, 1 }; unsafe { fixed(double *ptr = &someDoubles[1]) { fixed(double *ptr2 = &someResult[0]) { Vector256 <double> res2 = Avx.LoadVector256(ptr); // res2 = <3, -2.5, 7.5, 10.8> Avx.Store(ptr2, res2); } } fixed(float *ptr = &someFloats[0]) { fixed(float *ptr2 = &someOtherFloats[0]) { Vector256 <float> res2 = Avx.DotProduct(Avx.LoadVector256(ptr), Avx.LoadVector256(ptr2), 0b0001_0001); //Avx.Store(ptr2, res2); } } } } }