Example #1
0
        /// <summary>
        /// Load network file
        /// </summary>
        /// <param name="ANN"></param>
        static public void LoadNeuralNetworkOption(ref ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANN)
        {
            OpenFileDialog fileDialog = new OpenFileDialog();

            fileDialog.Title = "Select a neural network file...";
            System.Console.WriteLine("Select a neural network file...");
            fileDialog.ShowDialog();
            string neuralNetworkFile = fileDialog.FileName;

            System.Console.WriteLine("Selected neural network file: " + neuralNetworkFile);
            System.Console.WriteLine();

            ANN.LoadNetworkParameters(neuralNetworkFile);
        }
        static void Main(string[] args)
        {
            // Network Parameters:
              #region
              int nrOfPixelChannels = 3; // i.e. RGB
              int networkInputPatchDim = 64; // 64 in report, Has to be a multiple of the networkOutputDim.
              int networkOutputPatchDim = 16; // 16 in report
              int nrOfOutputs = networkOutputPatchDim * networkOutputPatchDim;

              int filterDim = 12; // 12 in report
              int nrOfFilters = 80; // 64 in report
              int filterStride = 4; // 4 in report
              int featureMapDim = (networkInputPatchDim - filterDim) / filterStride + 1;

              int[] weightDimForConvLayer = { nrOfFilters, filterDim, filterDim, nrOfPixelChannels }; // W(f,a,b,ff): (a,b,ff) = filter position,  f = feature map index next layer;
              int[] weightDimForOutputLayer = { nrOfOutputs, featureMapDim, featureMapDim, nrOfFilters }; // W(k,i,j,f): (i,j,f) = neuron position input layer,  k = neuron index this layer;

              string activationFunctionConvoluted = "relu"; // relu in report
              string activationFunctionOutput = "sigmoid"; // sigmoid in report
              string lossFunction = "crossentropy"; // crossentropy in report
              #endregion

              // Training parameters:
              #region
              // Due to rotation and edge effects (difference between network input and output dim) the output image will be
              // smaller. At least by a factor of sqrt(2)/2 due to the rotation

              int nrOfTrainingImagePairs, nrOfTrainingImagePairsInMemory, nrOfValidationImagePairs, nrOfImagePairs;
              bool visuallyCheckTraining = true;

              // Termination conditions:
              int maxNrOfEpochs;
              int maxNrOfMinutes;

              int miniBatchSize = 100;
              int calculateErrorInterval = 1;
              int updateMomentumLearningRateInterval = 2;

              double initLearningRate = 2.5 * Math.Pow(10, -6);; // constant 0.0005 in report, 0.000005 worked for single image (841) mini batch size
              double finalLearningRate = 3.125 * Math.Pow(10, -7);
              double initMomentum = 0.6;// constant 0.9 in report
              double finalMomentum = 0.9;
              double weightDecay = 0.0001; // 0.0002 in report
              #endregion

              // Other parameters:
              #region
              double roadProbabilityThreshold = 0.5;
              #endregion

              // Main menu:
              #region
              string mainMenuSelection, sel1MenuSelection, sel2MenuSelection, sel2MenuSelection2, sel5MenuSelection, sel5MenuSelection2,
            inputImagePath, goldImagePath, networkFolderLocation, inputImageFolder, saveImageFolder, runAnotherImage;
              OpenFileDialog fileDialog = new OpenFileDialog();
              SaveFileDialog saveDialog = new SaveFileDialog();
              FolderBrowserDialog folderDialog = new FolderBrowserDialog();
              Bitmap roadMap;
              bool displayMenu = true;
              string currentDirectory = Directory.GetCurrentDirectory();
              //System.Media.SoundPlayer goodbyePlayer = new System.Media.SoundPlayer(currentDirectory + "\\Audio\\" + "t2_hasta_la_vista.wav");
              while(displayMenu) {

            // Main header:
            #region
            System.Console.WriteLine("//////    //////        ////       //////      //////// //      // //////////");
            System.Console.WriteLine("//   //  //    //      //  //      //   //     //        //    //      //    ");
            System.Console.WriteLine("//   // //      //    //    //     //    //    //         //  //       //    ");
            System.Console.WriteLine("/////   //      //   //////////    //    //    //////      ////        //    ");
            System.Console.WriteLine("// //   //      //  //        //   //    //    //         //  //       //    ");
            System.Console.WriteLine("//  //   //    //  //          //  //   //     //        //    //      //    ");
            System.Console.WriteLine("//   //   //////  //            // //////      //////// //      //     //    ");
            System.Console.WriteLine("©2015\n");
            #endregion

            mainMenuSelection = Menu.MainMenu();

            switch (mainMenuSelection) {
              case "1":
            // Training a network:
            #region
            sel1MenuSelection = Menu.Sel1Menu();

            ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNTrain =
              new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                networkInputPatchDim, networkOutputPatchDim);
            // Adding layers to the network: (Note in the current state these two layers has to be added!)
            ANNTrain.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
            ANNTrain.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

            if (sel1MenuSelection == "1") {
              ANNTrain.InitializeRandomWeightAndBiases();
            } else if (sel1MenuSelection == "2") {
              Dialogs.LoadNeuralNetworkOption(ref ANNTrain);
            } else {
              System.Console.WriteLine("Wrong input please try again.");
              System.Console.WriteLine();
              break;
            }
            System.Console.WriteLine("Select network folder...");
            folderDialog.ShowDialog();
            networkFolderLocation = folderDialog.SelectedPath + "\\";
            System.Console.WriteLine("Selected network folder: " + networkFolderLocation);
            System.Console.WriteLine();

            Directory.CreateDirectory(networkFolderLocation + "Training set");
            Directory.CreateDirectory(networkFolderLocation + "Validation set");

            System.Console.WriteLine("Put the corresponding image pairs SatX.bmp and GoldX.bmp X = {1,2...,N} in the");
            System.Console.WriteLine("created subfolders \"Training set\" and \"Validation set\" located in the network");
            System.Console.WriteLine("folder location.");
            System.Console.WriteLine("Press any key to continue when this is done...");
            System.Console.ReadKey();
            System.Console.WriteLine();

            // Get number of image pairs
            DirectoryInfo dirInfoTrain = new DirectoryInfo(networkFolderLocation + "Training set");
            DirectoryInfo dirInfoValidation = new DirectoryInfo(networkFolderLocation + "Validation set");
            nrOfTrainingImagePairs = dirInfoTrain.GetFiles().Length/2;
            nrOfValidationImagePairs = dirInfoValidation.GetFiles().Length/2;

            System.Console.Write("Enter number of training image pairs which can be loaded in memory: ");
            nrOfTrainingImagePairsInMemory = Int32.Parse(System.Console.ReadLine());

            System.Console.Write("Enter max number of epochs: ");
            maxNrOfEpochs = Int32.Parse(System.Console.ReadLine());
            System.Console.Write("Enter max number of minutes: ");
            maxNrOfMinutes = Int32.Parse(System.Console.ReadLine());
            System.Console.WriteLine();
            System.Console.WriteLine("Training algorithm is running...");
            System.Console.WriteLine("Press \"esc\" to exit and save network.");
            System.Console.WriteLine();

            ANNTrain.TrainNetwork(networkFolderLocation, maxNrOfEpochs, maxNrOfMinutes, miniBatchSize, initLearningRate,
              finalLearningRate, initMomentum, finalMomentum, weightDecay, calculateErrorInterval, updateMomentumLearningRateInterval,
              nrOfTrainingImagePairs, nrOfTrainingImagePairsInMemory, nrOfValidationImagePairs, roadProbabilityThreshold, visuallyCheckTraining);

              System.Console.WriteLine();
            System.Console.WriteLine("Training complete!");
            System.Console.WriteLine("Network parameters saved in: " + networkFolderLocation + "Network parameters");
            System.Console.WriteLine();
            System.Console.ReadKey();
            #endregion
            break;
              case "2":
            // Run saved neural network
            #region
            ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNRun =
              new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                networkInputPatchDim, networkOutputPatchDim);
            // Adding layers to the network: (Note in the current state these two layers has to be added!)
            ANNRun.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
            ANNRun.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

            Dialogs.LoadNeuralNetworkOption(ref ANNRun);
            sel2MenuSelection = Menu.Sel2Menu();
            sel2MenuSelection2 = Menu.Sel2Menu2();

            if ((sel2MenuSelection != "1" && sel2MenuSelection != "2") || (sel2MenuSelection2 != "1" && sel2MenuSelection2 != "2")) {
              System.Console.WriteLine("Wrong input please try again.");
              System.Console.WriteLine();
              break;
            }

            if (sel2MenuSelection2 == "1") {
              runAnotherImage = "1";

              while (runAnotherImage == "1") {
                inputImagePath = Dialogs.SelectInputImage();

                System.Console.WriteLine("Running road detection algorithm...");
                if (sel2MenuSelection == "1") {
                  roadMap = ANNRun.GetRoadBitmap(inputImagePath, roadProbabilityThreshold);
                } else {
                  roadMap = ANNRun.GetRawRoadBitmap(inputImagePath);
                }
                Dialogs.SaveBitmap(roadMap);
                System.Console.WriteLine("Road detection complete!");
                System.Console.WriteLine();

                runAnotherImage = Menu.RunAnotherImage();
              }
            } else {
              System.Console.WriteLine("Put the images named SatX.bmp X = {1,2...,N} in an input image folder");
              inputImageFolder = Dialogs.SelectInputImageFolder();

              DirectoryInfo dirInfo = new DirectoryInfo(inputImageFolder);
              int nrOfImages = dirInfo.GetFiles("Sat*").Length;
              saveImageFolder = Dialogs.SelectSaveImageFolder();

              System.Console.WriteLine("Running road detection algorithm...");
              for (int i = 1; i <= nrOfImages; ++i) {
                if (sel2MenuSelection == "1") {
                  roadMap = ANNRun.GetRoadBitmap(inputImageFolder + "Sat" + i + ".bmp", roadProbabilityThreshold);
                } else {
                  roadMap = ANNRun.GetRawRoadBitmap(inputImageFolder + "Sat" + i + ".bmp");
                }
                roadMap.Save(saveImageFolder + "Sat" + i + ".bmp");
              }
              System.Console.WriteLine("Road detection complete!");
              System.Console.WriteLine();
            }
            System.Console.ReadKey();
            #endregion
            break;
              case "3":
            // Run road extraction algorithm
            #region
            ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNInit =
              new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                networkInputPatchDim, networkOutputPatchDim);
            // Adding layers to the network: (Note in the current state these two layers has to be added!)
            ANNInit.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
            ANNInit.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

            ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNStructure =
              new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                networkInputPatchDim, networkOutputPatchDim);
            // Adding layers to the network: (Note in the current state these two layers has to be added!)
            ANNStructure.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
            ANNStructure.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

            Dialogs.LoadNeuralNetworkOption(ref ANNInit);
            Dialogs.LoadNeuralNetworkOption(ref ANNStructure);

            runAnotherImage = "1";

            while (runAnotherImage == "1") {
              inputImagePath = Dialogs.SelectInputImage();

              System.Console.WriteLine("Running road extraction algorithm...");
              Bitmap rawRoadMap = ANNInit.GetRawRoadBitmap(inputImagePath);
              roadMap = ANNStructure.GetRoadBitmap(rawRoadMap, roadProbabilityThreshold);
              System.Console.WriteLine("Road extraction complete!");
              System.Console.WriteLine();
              Dialogs.SaveBitmap(roadMap);
              System.Console.ReadKey();

              runAnotherImage = Menu.RunAnotherImage();
            }
            #endregion
            break;
              case "4":
            // Testing scripts:
            #region
            ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNTest =
              new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                networkInputPatchDim, networkOutputPatchDim);
            // Adding layers to the network: (Note in the current state these two layers has to be added!)
            ANNTest.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
            ANNTest.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

            System.Console.WriteLine("Testing the backpropagation of the network using finite difference calculus on \none random input patch.");
            System.Console.WriteLine("A relative error less then 1e-04 is good as epsilon gets smaller.");
            System.Console.WriteLine();

            inputImagePath = Dialogs.SelectInputImage();
            goldImagePath = Dialogs.SelectGoldImage();

            ANNTest.InitializeRandomWeightAndBiases();
            ANNTest.TestNetwork(inputImagePath, goldImagePath);

            System.Console.WriteLine("Testing complete!");
            System.Console.WriteLine();
            System.Console.ReadKey();
            #endregion
            break;
              case "5":
            //Data processing:
            #region
            sel5MenuSelection = Menu.Sel5Menu();

            if (sel5MenuSelection == "1") {
              // Preprocess google images
              #region
              System.Console.WriteLine("Put the Google image pairs named SatX.bmp and GoldX.bmp X = {1,2...,N}");
              System.Console.WriteLine("in an input folder.");
              System.Console.WriteLine("Press any key to continue when this is done...");
              System.Console.ReadKey();
              System.Console.WriteLine();

              inputImageFolder = Dialogs.SelectInputImageFolder();
              saveImageFolder = Dialogs.SelectSaveImageFolder();

              DirectoryInfo dirInfo = new DirectoryInfo(inputImageFolder);
              nrOfImagePairs = dirInfo.GetFiles().Length / 2;

              System.Console.Write("Enter number of boarder pixels to remove for the Google logo: ");
              int googleLogoCropSize = Int32.Parse(System.Console.ReadLine());
              System.Console.Write("Do you want to randomly rotate the images (y/n): ");
              bool rotateImages = (System.Console.ReadLine() == "y") ? true : false;

              MiscLibrary.ImageProcessor.PreprocessGoogleMapImages(inputImageFolder, saveImageFolder, nrOfImagePairs,
                googleLogoCropSize, networkOutputPatchDim, rotateImages);

              System.Console.WriteLine("Preprocessing complete!");
              System.Console.WriteLine();
              #endregion
            } else if (sel5MenuSelection == "2") {
              // Crop images
              #region

              sel5MenuSelection2 = Menu.Sel5Menu2();

              System.Console.Write("Enter crop height: ");
              int cropWidth = Int32.Parse(System.Console.ReadLine());
              System.Console.Write("Enter crop width: ");
              int cropHeight = Int32.Parse(System.Console.ReadLine());

              if (sel5MenuSelection2 == "1") {
                runAnotherImage = "1";

                while (runAnotherImage == "1") {
                  inputImagePath = Dialogs.SelectInputImage();
                  Bitmap cropBitmap = new Bitmap(inputImagePath);
                  cropBitmap = MiscLibrary.ImageProcessor.CropBitmap(cropBitmap, cropWidth, cropHeight);
                  Dialogs.SaveBitmap(cropBitmap);

                  System.Console.WriteLine("Cropping complete!");
                  System.Console.WriteLine();

                  runAnotherImage = Menu.RunAnotherImage();
                }

              } else if (sel5MenuSelection2 == "2") {
                System.Console.Write("Enter image prefixes: ");
                string imgPrefix = System.Console.ReadLine();

                System.Console.WriteLine("Put the images that are to be cropped in an input image folder.");
                System.Console.WriteLine("Name the images as " + imgPrefix + "X.bmp where X = {1,2...,N}.");

                inputImageFolder = Dialogs.SelectInputImageFolder();
                DirectoryInfo dirInfo = new DirectoryInfo(inputImageFolder);
                int nrOfImages = dirInfo.GetFiles(imgPrefix + "*").Length;
                saveImageFolder = Dialogs.SelectSaveImageFolder();

                for (int i = 1; i <= nrOfImages; ++i) {
                  Bitmap cropBitmap = new Bitmap(inputImageFolder + imgPrefix + i + ".bmp");
                  cropBitmap = MiscLibrary.ImageProcessor.CropBitmap(cropBitmap, cropWidth, cropHeight);
                  cropBitmap.Save(saveImageFolder + imgPrefix + i + ".bmp");
                }
                System.Console.WriteLine("Cropping complete!");
                System.Console.WriteLine();
              } else {
                System.Console.WriteLine("Wrong menu input please try again.");
                System.Console.WriteLine();
              }

              #endregion
            } else if (sel5MenuSelection == "3") {
              // Rename bitmaps
              #region
              System.Console.Write("Enter image prefixes: ");
              string imgPrefix = System.Console.ReadLine();
              System.Console.WriteLine("Put the images that are to be renamed in an input image folder.");
              inputImageFolder = Dialogs.SelectInputImageFolder();
              saveImageFolder = Dialogs.SelectSaveImageFolder();
              System.Console.WriteLine("The images will be named as " + imgPrefix + "X.bmp where X = {1,2...,N}");

              DirectoryInfo dirInfo = new DirectoryInfo(inputImageFolder);
              FileInfo[] fileInfo = dirInfo.GetFiles(imgPrefix + "*");
              int counter = 1;
              foreach(FileInfo f in fileInfo) {
                File.Move(f.FullName, saveImageFolder + imgPrefix + counter + ".bmp");
                ++counter;
              }
              System.Console.WriteLine("Bitmap renaming complete!");
              #endregion
            } else {
              System.Console.WriteLine("Wrong input please try again.");
              System.Console.WriteLine();
            }
            System.Console.ReadKey();
            #endregion
            break;
              case "6":
            //Evaluate road map
            #region
            inputImagePath = Dialogs.SelectInputImage();
            goldImagePath = Dialogs.SelectGoldImage();
            Bitmap inputImage = new Bitmap(inputImagePath);

            int classificationError = MiscLibrary.ImageProcessor.CalculateClassificationError(inputImagePath, goldImagePath);
            int[] evaluationArray = MiscLibrary.ImageProcessor.EvaluateRoadMap(inputImagePath, goldImagePath);
            // evaluationArray = {totNrOfRoadPixels, correctRoadPixels, incorrectRoadPixels,
            //  totNrOfNonRoadPixels, correctNonRoadPixels, incorrectNonRoadPixels}

            System.Console.WriteLine("Evaluation:");
            System.Console.WriteLine("Total number of pixels: {0}", evaluationArray[0] + evaluationArray[3]);
            System.Console.WriteLine("Classification error: {0}, {1}%", classificationError, 100 * (double)classificationError / (evaluationArray[0] + evaluationArray[3]));
            System.Console.WriteLine("Total number of road pixels: {0}", evaluationArray[0]);
            System.Console.WriteLine("Correct classified road pixels: {0}, {1}%", evaluationArray[1], 100 * (double)evaluationArray[1] / evaluationArray[0]);
            System.Console.WriteLine("Incorrect classified road pixels: {0}", evaluationArray[2]);
            System.Console.WriteLine("Total number of non road pixels: {0}", evaluationArray[3]);
            System.Console.WriteLine("Correct classified non road pixels: {0}, {1}%", evaluationArray[4], 100 * (double)evaluationArray[4] / evaluationArray[3]);
            System.Console.WriteLine("Incorrect classified non road pixels: {0}%", evaluationArray[5]);
            System.Console.WriteLine();
            double precision = (double)evaluationArray[1] / (evaluationArray[1] + evaluationArray[5]);
            double recall = (double)evaluationArray[1] / (evaluationArray[1] + evaluationArray[2]);
            double quality = (double)evaluationArray[1] / (evaluationArray[1] + evaluationArray[2] + evaluationArray[5]);
            double accuracy = (double)(evaluationArray[1] + evaluationArray[4]) / (evaluationArray[0] + evaluationArray[3]);
            System.Console.WriteLine("Precision: {0}", precision);
            System.Console.WriteLine("Recall: {0}", recall);
            System.Console.WriteLine("Quality: {0}", quality);
            System.Console.WriteLine("Accuracy: {0}", accuracy);
            System.Console.WriteLine("Evaluation complete!");
            System.Console.ReadKey();
            #endregion
            break;
              case "7":
            // Bye Bye
            #region
            System.Console.WriteLine("Hasta la vista, baby!");
            //goodbyePlayer.Play();
            System.Console.ReadKey();
            #endregion
            return;
              default:
            // Input error
            #region
            System.Console.WriteLine("Wrong input, please try again.");
            System.Console.WriteLine();
            System.Console.ReadKey();
            #endregion
            break;
            }
              }
              #endregion
        }
Example #3
0
        static void Main(string[] args)
        {
            // Network Parameters:
            #region
            int nrOfPixelChannels     = 3;  // i.e. RGB
            int networkInputPatchDim  = 64; // 64 in report, Has to be a multiple of the networkOutputDim.
            int networkOutputPatchDim = 16; // 16 in report
            int nrOfOutputs           = networkOutputPatchDim * networkOutputPatchDim;

            int filterDim     = 12; // 12 in report
            int nrOfFilters   = 80; // 64 in report
            int filterStride  = 4;  // 4 in report
            int featureMapDim = (networkInputPatchDim - filterDim) / filterStride + 1;

            int[] weightDimForConvLayer   = { nrOfFilters, filterDim, filterDim, nrOfPixelChannels };   // W(f,a,b,ff): (a,b,ff) = filter position,  f = feature map index next layer;
            int[] weightDimForOutputLayer = { nrOfOutputs, featureMapDim, featureMapDim, nrOfFilters }; // W(k,i,j,f): (i,j,f) = neuron position input layer,  k = neuron index this layer;

            string activationFunctionConvoluted = "relu";                                               // relu in report
            string activationFunctionOutput     = "sigmoid";                                            // sigmoid in report
            string lossFunction = "crossentropy";                                                       // crossentropy in report
            #endregion

            // Training parameters:
            #region
            // Due to rotation and edge effects (difference between network input and output dim) the output image will be
            // smaller. At least by a factor of sqrt(2)/2 due to the rotation

            int  nrOfTrainingImagePairs, nrOfTrainingImagePairsInMemory, nrOfValidationImagePairs, nrOfImagePairs;
            bool visuallyCheckTraining = true;

            // Termination conditions:
            int maxNrOfEpochs;
            int maxNrOfMinutes;

            int miniBatchSize                      = 100;
            int calculateErrorInterval             = 1;
            int updateMomentumLearningRateInterval = 2;

            double initLearningRate  = 2.5 * Math.Pow(10, -6);; // constant 0.0005 in report, 0.000005 worked for single image (841) mini batch size
            double finalLearningRate = 3.125 * Math.Pow(10, -7);
            double initMomentum      = 0.6;                     // constant 0.9 in report
            double finalMomentum     = 0.9;
            double weightDecay       = 0.0001;                  // 0.0002 in report
            #endregion

            // Other parameters:
            #region
            double roadProbabilityThreshold = 0.5;
            #endregion

            // Main menu:
            #region
            string mainMenuSelection, sel1MenuSelection, sel2MenuSelection, sel2MenuSelection2, sel5MenuSelection, sel5MenuSelection2,
                   inputImagePath, goldImagePath, networkFolderLocation, inputImageFolder, saveImageFolder, runAnotherImage;
            OpenFileDialog      fileDialog   = new OpenFileDialog();
            SaveFileDialog      saveDialog   = new SaveFileDialog();
            FolderBrowserDialog folderDialog = new FolderBrowserDialog();
            Bitmap roadMap;
            bool   displayMenu      = true;
            string currentDirectory = Directory.GetCurrentDirectory();
            //System.Media.SoundPlayer goodbyePlayer = new System.Media.SoundPlayer(currentDirectory + "\\Audio\\" + "t2_hasta_la_vista.wav");
            while (displayMenu)
            {
                // Main header:
                #region
                System.Console.WriteLine("//////    //////        ////       //////      //////// //      // //////////");
                System.Console.WriteLine("//   //  //    //      //  //      //   //     //        //    //      //    ");
                System.Console.WriteLine("//   // //      //    //    //     //    //    //         //  //       //    ");
                System.Console.WriteLine("/////   //      //   //////////    //    //    //////      ////        //    ");
                System.Console.WriteLine("// //   //      //  //        //   //    //    //         //  //       //    ");
                System.Console.WriteLine("//  //   //    //  //          //  //   //     //        //    //      //    ");
                System.Console.WriteLine("//   //   //////  //            // //////      //////// //      //     //    ");
                System.Console.WriteLine("©2015\n");
                #endregion

                mainMenuSelection = Menu.MainMenu();

                switch (mainMenuSelection)
                {
                case "1":
                    // Training a network:
                    #region
                    sel1MenuSelection = Menu.Sel1Menu();

                    ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNTrain =
                        new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                                                                                   networkInputPatchDim, networkOutputPatchDim);
                    // Adding layers to the network: (Note in the current state these two layers has to be added!)
                    ANNTrain.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
                    ANNTrain.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

                    if (sel1MenuSelection == "1")
                    {
                        ANNTrain.InitializeRandomWeightAndBiases();
                    }
                    else if (sel1MenuSelection == "2")
                    {
                        Dialogs.LoadNeuralNetworkOption(ref ANNTrain);
                    }
                    else
                    {
                        System.Console.WriteLine("Wrong input please try again.");
                        System.Console.WriteLine();
                        break;
                    }
                    System.Console.WriteLine("Select network folder...");
                    folderDialog.ShowDialog();
                    networkFolderLocation = folderDialog.SelectedPath + "\\";
                    System.Console.WriteLine("Selected network folder: " + networkFolderLocation);
                    System.Console.WriteLine();

                    Directory.CreateDirectory(networkFolderLocation + "Training set");
                    Directory.CreateDirectory(networkFolderLocation + "Validation set");

                    System.Console.WriteLine("Put the corresponding image pairs SatX.bmp and GoldX.bmp X = {1,2...,N} in the");
                    System.Console.WriteLine("created subfolders \"Training set\" and \"Validation set\" located in the network");
                    System.Console.WriteLine("folder location.");
                    System.Console.WriteLine("Press any key to continue when this is done...");
                    System.Console.ReadKey();
                    System.Console.WriteLine();

                    // Get number of image pairs
                    DirectoryInfo dirInfoTrain      = new DirectoryInfo(networkFolderLocation + "Training set");
                    DirectoryInfo dirInfoValidation = new DirectoryInfo(networkFolderLocation + "Validation set");
                    nrOfTrainingImagePairs   = dirInfoTrain.GetFiles().Length / 2;
                    nrOfValidationImagePairs = dirInfoValidation.GetFiles().Length / 2;

                    System.Console.Write("Enter number of training image pairs which can be loaded in memory: ");
                    nrOfTrainingImagePairsInMemory = Int32.Parse(System.Console.ReadLine());

                    System.Console.Write("Enter max number of epochs: ");
                    maxNrOfEpochs = Int32.Parse(System.Console.ReadLine());
                    System.Console.Write("Enter max number of minutes: ");
                    maxNrOfMinutes = Int32.Parse(System.Console.ReadLine());
                    System.Console.WriteLine();
                    System.Console.WriteLine("Training algorithm is running...");
                    System.Console.WriteLine("Press \"esc\" to exit and save network.");
                    System.Console.WriteLine();

                    ANNTrain.TrainNetwork(networkFolderLocation, maxNrOfEpochs, maxNrOfMinutes, miniBatchSize, initLearningRate,
                                          finalLearningRate, initMomentum, finalMomentum, weightDecay, calculateErrorInterval, updateMomentumLearningRateInterval,
                                          nrOfTrainingImagePairs, nrOfTrainingImagePairsInMemory, nrOfValidationImagePairs, roadProbabilityThreshold, visuallyCheckTraining);

                    System.Console.WriteLine();
                    System.Console.WriteLine("Training complete!");
                    System.Console.WriteLine("Network parameters saved in: " + networkFolderLocation + "Network parameters");
                    System.Console.WriteLine();
                    System.Console.ReadKey();
                    #endregion
                    break;

                case "2":
                    // Run saved neural network
                    #region
                    ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNRun =
                        new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                                                                                   networkInputPatchDim, networkOutputPatchDim);
                    // Adding layers to the network: (Note in the current state these two layers has to be added!)
                    ANNRun.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
                    ANNRun.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

                    Dialogs.LoadNeuralNetworkOption(ref ANNRun);
                    sel2MenuSelection  = Menu.Sel2Menu();
                    sel2MenuSelection2 = Menu.Sel2Menu2();

                    if ((sel2MenuSelection != "1" && sel2MenuSelection != "2") || (sel2MenuSelection2 != "1" && sel2MenuSelection2 != "2"))
                    {
                        System.Console.WriteLine("Wrong input please try again.");
                        System.Console.WriteLine();
                        break;
                    }

                    if (sel2MenuSelection2 == "1")
                    {
                        runAnotherImage = "1";

                        while (runAnotherImage == "1")
                        {
                            inputImagePath = Dialogs.SelectInputImage();

                            System.Console.WriteLine("Running road detection algorithm...");
                            if (sel2MenuSelection == "1")
                            {
                                roadMap = ANNRun.GetRoadBitmap(inputImagePath, roadProbabilityThreshold);
                            }
                            else
                            {
                                roadMap = ANNRun.GetRawRoadBitmap(inputImagePath);
                            }
                            Dialogs.SaveBitmap(roadMap);
                            System.Console.WriteLine("Road detection complete!");
                            System.Console.WriteLine();

                            runAnotherImage = Menu.RunAnotherImage();
                        }
                    }
                    else
                    {
                        System.Console.WriteLine("Put the images named SatX.bmp X = {1,2...,N} in an input image folder");
                        inputImageFolder = Dialogs.SelectInputImageFolder();

                        DirectoryInfo dirInfo    = new DirectoryInfo(inputImageFolder);
                        int           nrOfImages = dirInfo.GetFiles("Sat*").Length;
                        saveImageFolder = Dialogs.SelectSaveImageFolder();

                        System.Console.WriteLine("Running road detection algorithm...");
                        for (int i = 1; i <= nrOfImages; ++i)
                        {
                            if (sel2MenuSelection == "1")
                            {
                                roadMap = ANNRun.GetRoadBitmap(inputImageFolder + "Sat" + i + ".bmp", roadProbabilityThreshold);
                            }
                            else
                            {
                                roadMap = ANNRun.GetRawRoadBitmap(inputImageFolder + "Sat" + i + ".bmp");
                            }
                            roadMap.Save(saveImageFolder + "Sat" + i + ".bmp");
                        }
                        System.Console.WriteLine("Road detection complete!");
                        System.Console.WriteLine();
                    }
                    System.Console.ReadKey();
                    #endregion
                    break;

                case "3":
                    // Run road extraction algorithm
                    #region
                    ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNInit =
                        new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                                                                                   networkInputPatchDim, networkOutputPatchDim);
                    // Adding layers to the network: (Note in the current state these two layers has to be added!)
                    ANNInit.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
                    ANNInit.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

                    ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNStructure =
                        new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                                                                                   networkInputPatchDim, networkOutputPatchDim);
                    // Adding layers to the network: (Note in the current state these two layers has to be added!)
                    ANNStructure.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
                    ANNStructure.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

                    Dialogs.LoadNeuralNetworkOption(ref ANNInit);
                    Dialogs.LoadNeuralNetworkOption(ref ANNStructure);

                    runAnotherImage = "1";

                    while (runAnotherImage == "1")
                    {
                        inputImagePath = Dialogs.SelectInputImage();

                        System.Console.WriteLine("Running road extraction algorithm...");
                        Bitmap rawRoadMap = ANNInit.GetRawRoadBitmap(inputImagePath);
                        roadMap = ANNStructure.GetRoadBitmap(rawRoadMap, roadProbabilityThreshold);
                        System.Console.WriteLine("Road extraction complete!");
                        System.Console.WriteLine();
                        Dialogs.SaveBitmap(roadMap);
                        System.Console.ReadKey();

                        runAnotherImage = Menu.RunAnotherImage();
                    }
                    #endregion
                    break;

                case "4":
                    // Testing scripts:
                    #region
                    ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork ANNTest =
                        new ArtificialNeuralNetworkLibrary.ArtificialNeuralNetwork(weightDimForConvLayer, weightDimForOutputLayer,
                                                                                   networkInputPatchDim, networkOutputPatchDim);
                    // Adding layers to the network: (Note in the current state these two layers has to be added!)
                    ANNTest.InitializeConvolutionalLayer(networkInputPatchDim, nrOfPixelChannels, activationFunctionConvoluted, nrOfFilters, filterDim, filterStride);
                    ANNTest.InitializeFullyConnectedOutputLayer(featureMapDim, nrOfFilters, activationFunctionOutput, networkOutputPatchDim, lossFunction);

                    System.Console.WriteLine("Testing the backpropagation of the network using finite difference calculus on \none random input patch.");
                    System.Console.WriteLine("A relative error less then 1e-04 is good as epsilon gets smaller.");
                    System.Console.WriteLine();

                    inputImagePath = Dialogs.SelectInputImage();
                    goldImagePath  = Dialogs.SelectGoldImage();

                    ANNTest.InitializeRandomWeightAndBiases();
                    ANNTest.TestNetwork(inputImagePath, goldImagePath);

                    System.Console.WriteLine("Testing complete!");
                    System.Console.WriteLine();
                    System.Console.ReadKey();
                    #endregion
                    break;

                case "5":
                    //Data processing:
                    #region
                    sel5MenuSelection = Menu.Sel5Menu();

                    if (sel5MenuSelection == "1")
                    {
                        // Preprocess google images
                        #region
                        System.Console.WriteLine("Put the Google image pairs named SatX.bmp and GoldX.bmp X = {1,2...,N}");
                        System.Console.WriteLine("in an input folder.");
                        System.Console.WriteLine("Press any key to continue when this is done...");
                        System.Console.ReadKey();
                        System.Console.WriteLine();

                        inputImageFolder = Dialogs.SelectInputImageFolder();
                        saveImageFolder  = Dialogs.SelectSaveImageFolder();

                        DirectoryInfo dirInfo = new DirectoryInfo(inputImageFolder);
                        nrOfImagePairs = dirInfo.GetFiles().Length / 2;

                        System.Console.Write("Enter number of boarder pixels to remove for the Google logo: ");
                        int googleLogoCropSize = Int32.Parse(System.Console.ReadLine());
                        System.Console.Write("Do you want to randomly rotate the images (y/n): ");
                        bool rotateImages = (System.Console.ReadLine() == "y") ? true : false;

                        MiscLibrary.ImageProcessor.PreprocessGoogleMapImages(inputImageFolder, saveImageFolder, nrOfImagePairs,
                                                                             googleLogoCropSize, networkOutputPatchDim, rotateImages);

                        System.Console.WriteLine("Preprocessing complete!");
                        System.Console.WriteLine();
                        #endregion
                    }
                    else if (sel5MenuSelection == "2")
                    {
                        // Crop images
                        #region

                        sel5MenuSelection2 = Menu.Sel5Menu2();

                        System.Console.Write("Enter crop height: ");
                        int cropWidth = Int32.Parse(System.Console.ReadLine());
                        System.Console.Write("Enter crop width: ");
                        int cropHeight = Int32.Parse(System.Console.ReadLine());

                        if (sel5MenuSelection2 == "1")
                        {
                            runAnotherImage = "1";

                            while (runAnotherImage == "1")
                            {
                                inputImagePath = Dialogs.SelectInputImage();
                                Bitmap cropBitmap = new Bitmap(inputImagePath);
                                cropBitmap = MiscLibrary.ImageProcessor.CropBitmap(cropBitmap, cropWidth, cropHeight);
                                Dialogs.SaveBitmap(cropBitmap);

                                System.Console.WriteLine("Cropping complete!");
                                System.Console.WriteLine();

                                runAnotherImage = Menu.RunAnotherImage();
                            }
                        }
                        else if (sel5MenuSelection2 == "2")
                        {
                            System.Console.Write("Enter image prefixes: ");
                            string imgPrefix = System.Console.ReadLine();

                            System.Console.WriteLine("Put the images that are to be cropped in an input image folder.");
                            System.Console.WriteLine("Name the images as " + imgPrefix + "X.bmp where X = {1,2...,N}.");

                            inputImageFolder = Dialogs.SelectInputImageFolder();
                            DirectoryInfo dirInfo    = new DirectoryInfo(inputImageFolder);
                            int           nrOfImages = dirInfo.GetFiles(imgPrefix + "*").Length;
                            saveImageFolder = Dialogs.SelectSaveImageFolder();

                            for (int i = 1; i <= nrOfImages; ++i)
                            {
                                Bitmap cropBitmap = new Bitmap(inputImageFolder + imgPrefix + i + ".bmp");
                                cropBitmap = MiscLibrary.ImageProcessor.CropBitmap(cropBitmap, cropWidth, cropHeight);
                                cropBitmap.Save(saveImageFolder + imgPrefix + i + ".bmp");
                            }
                            System.Console.WriteLine("Cropping complete!");
                            System.Console.WriteLine();
                        }
                        else
                        {
                            System.Console.WriteLine("Wrong menu input please try again.");
                            System.Console.WriteLine();
                        }

                        #endregion
                    }
                    else if (sel5MenuSelection == "3")
                    {
                        // Rename bitmaps
                        #region
                        System.Console.Write("Enter image prefixes: ");
                        string imgPrefix = System.Console.ReadLine();
                        System.Console.WriteLine("Put the images that are to be renamed in an input image folder.");
                        inputImageFolder = Dialogs.SelectInputImageFolder();
                        saveImageFolder  = Dialogs.SelectSaveImageFolder();
                        System.Console.WriteLine("The images will be named as " + imgPrefix + "X.bmp where X = {1,2...,N}");

                        DirectoryInfo dirInfo  = new DirectoryInfo(inputImageFolder);
                        FileInfo[]    fileInfo = dirInfo.GetFiles(imgPrefix + "*");
                        int           counter  = 1;
                        foreach (FileInfo f in fileInfo)
                        {
                            File.Move(f.FullName, saveImageFolder + imgPrefix + counter + ".bmp");
                            ++counter;
                        }
                        System.Console.WriteLine("Bitmap renaming complete!");
                        #endregion
                    }
                    else
                    {
                        System.Console.WriteLine("Wrong input please try again.");
                        System.Console.WriteLine();
                    }
                    System.Console.ReadKey();
                    #endregion
                    break;

                case "6":
                    //Evaluate road map
                    #region
                    inputImagePath = Dialogs.SelectInputImage();
                    goldImagePath  = Dialogs.SelectGoldImage();
                    Bitmap inputImage = new Bitmap(inputImagePath);

                    int   classificationError = MiscLibrary.ImageProcessor.CalculateClassificationError(inputImagePath, goldImagePath);
                    int[] evaluationArray     = MiscLibrary.ImageProcessor.EvaluateRoadMap(inputImagePath, goldImagePath);
                    // evaluationArray = {totNrOfRoadPixels, correctRoadPixels, incorrectRoadPixels,
                    //  totNrOfNonRoadPixels, correctNonRoadPixels, incorrectNonRoadPixels}

                    System.Console.WriteLine("Evaluation:");
                    System.Console.WriteLine("Total number of pixels: {0}", evaluationArray[0] + evaluationArray[3]);
                    System.Console.WriteLine("Classification error: {0}, {1}%", classificationError, 100 * (double)classificationError / (evaluationArray[0] + evaluationArray[3]));
                    System.Console.WriteLine("Total number of road pixels: {0}", evaluationArray[0]);
                    System.Console.WriteLine("Correct classified road pixels: {0}, {1}%", evaluationArray[1], 100 * (double)evaluationArray[1] / evaluationArray[0]);
                    System.Console.WriteLine("Incorrect classified road pixels: {0}", evaluationArray[2]);
                    System.Console.WriteLine("Total number of non road pixels: {0}", evaluationArray[3]);
                    System.Console.WriteLine("Correct classified non road pixels: {0}, {1}%", evaluationArray[4], 100 * (double)evaluationArray[4] / evaluationArray[3]);
                    System.Console.WriteLine("Incorrect classified non road pixels: {0}%", evaluationArray[5]);
                    System.Console.WriteLine();
                    double precision = (double)evaluationArray[1] / (evaluationArray[1] + evaluationArray[5]);
                    double recall    = (double)evaluationArray[1] / (evaluationArray[1] + evaluationArray[2]);
                    double quality   = (double)evaluationArray[1] / (evaluationArray[1] + evaluationArray[2] + evaluationArray[5]);
                    double accuracy  = (double)(evaluationArray[1] + evaluationArray[4]) / (evaluationArray[0] + evaluationArray[3]);
                    System.Console.WriteLine("Precision: {0}", precision);
                    System.Console.WriteLine("Recall: {0}", recall);
                    System.Console.WriteLine("Quality: {0}", quality);
                    System.Console.WriteLine("Accuracy: {0}", accuracy);
                    System.Console.WriteLine("Evaluation complete!");
                    System.Console.ReadKey();
                    #endregion
                    break;

                case "7":
                    // Bye Bye
                    #region
                    System.Console.WriteLine("Hasta la vista, baby!");
                    //goodbyePlayer.Play();
                    System.Console.ReadKey();
                    #endregion
                    return;

                default:
                    // Input error
                    #region
                    System.Console.WriteLine("Wrong input, please try again.");
                    System.Console.WriteLine();
                    System.Console.ReadKey();
                    #endregion
                    break;
                }
            }
            #endregion
        }