//https://msdn.microsoft.com/en-us/library/windows/apps/ff402526(v=vs.105).aspx static void Main(string[] args) { API client = new API(); var data = client.LoadFile("mainText.txt"); //var multiData = client.LoadFilesMulticore(new List<string>() { "mainText.txt", "mainTextShort.txt", "prepositions.txt", "unions.txt" }); var mst_one = client.HandleByMystem(data); //var mst_several = client.HandleByMystemMulticore(multiData); var stats_words_one = client.ProvideWordsStatsAnalysis(mst_one); var dict = client.GetDataReady<string>(stats_words_one); var cl_centers = client.GetDefaultClustersCenters(dict); var cl_settings = new ClasterSettings<string>(cl_centers, 0.000000000000000000000000001, 1.5f, 10000, dict); var result = client.ProvideClusterAnalysis<string>(cl_settings, "1"); string json = JsonConvert.SerializeObject(result.Result.Select(i => new { name = i.Key, values = i.Value })); //ClasterAnalysis<string> ca = new ClasterAnalysis<string>(d, 0.000000000000000000000000001, 1.5f, 10000, clusters); //var res = ca.Clusterize(); //var stats_digrams_one = client.ProvideDigramsStatsAnalysis(mst_one); //var stats_words_several = client.ProvideWordsStatsAnalysisMulticore(mst_several); //var stats_digrams_several = client.ProvideDigramsStatsAnalysisMulticore(mst_several); Console.WriteLine("That's all!"); /*Multiprocessor mps = new Multiprocessor(); mps.MultiprocessorFileRead(new List<string>() { "mainText.txt" }); var texts = mps.Cache; MystemProvider mst = new MystemProvider(1); var list = mst.LaunchMystem(texts[0].List); var words = list.Select(el => { if (el.analysis.Length == 0) return el.text; return el.analysis[0].lex; }).ToList(); var frequencyWordDict = StatisticsAnalysis.GetFrequencyDictionary(words); var frequencyDigramDict = StatisticsAnalysis.GetDigramFrequenceDictionary(words); var mutualInf = StatisticsAnalysis.CalculateMutualInformation(frequencyDigramDict, frequencyWordDict, words.Count); var tScore = StatisticsAnalysis.CalculateTScore(frequencyDigramDict, frequencyWordDict, words.Count); var llh = StatisticsAnalysis.CalculateLogLikelihood(frequencyDigramDict); List<Dictionary<WordDigram, double>> dList = new List<Dictionary<WordDigram, double>>(); dList.Add(frequencyDigramDict.ToDictionary(i => i.Key, i => (double)i.Value)); //dList.Add(mutualInf); //dList.Add(tScore); //dList.Add(llh); var mergedDictionary = dList.MergeDictionaries<WordDigram>(); //СЛОВА List<Dictionary<string, double>> wlist = new List<Dictionary<string, double>>(); wlist.Add(frequencyWordDict.ToDictionary(i => i.Key, i => (double)i.Value)); var d = wlist.MergeDictionaries<string>(); var m = d.Select(i => new { i.Key, v = i.Value[0] }).ToList(); var c = m.OrderByDescending(i => i.v).ToList(); double[,] clusters = new double[,] { //{ 14.8f, 0.96f, 3.29 } //{ 1, 10, 0.2f, 2 } //{ 10, 0.1f, 1 } { 25 }, //{ 10 }, { 5 } }; ClasterAnalysis<string> ca = new ClasterAnalysis<string>(d, 0.000000000000000000000000001, 1.5f, 10000, clusters); var res = ca.Clusterize(); var n = ( from i in c join j in res on i.Key equals j.Key select new { word = i.Key, values = j.Value, count = i.v } ).ToList(); //var r = res.Where(i => i.Key.FirstWord == "взаимодействие");*/ }