Ejemplo n.º 1
0
        public void TestWeightedSum_DataTable()
        {
            string[] strPrefSQL = GetPreferences();

            for (int i = 0; i <= strPrefSQL.GetUpperBound(0); i++)
            {

                SQLCommon common = new SQLCommon();
                common.SkylineType = new SkylineSQL();
                DataTable dt = common.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, strPrefSQL[i]);

                //Check tuples (every algorithm should deliver the same amount of tuples)
                Assert.AreEqual(dt.Rows.Count, 55208, 0, "WeightedSum Sorting failed");

            }
        }
Ejemplo n.º 2
0
        public void GeneratePerformanceQueries()
        {
            if (MaxDimensions < MinDimensions)
            {
                Debug.WriteLine("Max Dimensions must be >= Min Dimensions!");
                return;
            }

            //Open DBConnection --> Otherwise first query is slower as usual, because DBConnection is not open
            SQLCommon parser = new SQLCommon();
            DataTable dt = parser.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, "SELECT cars.id FROM cars SKYLINE OF cars.price LOW");

            //Use the correct line, depending on how incomparable items should be compared
            ArrayList listPreferences = new ArrayList();
            SqlConnection cnnSQL = new SqlConnection(Helper.ConnectionString); //for CLR performance tets
            ArrayList preferencesMode = new ArrayList();
            if (UseCLR)
            {
                cnnSQL.Open();
            }

            switch (Set)
            {
                case PreferenceSet.ArchiveComparable:
                    preferencesMode = GetArchiveComparablePreferences();
                    break;
                case PreferenceSet.ArchiveIncomparable:
                    preferencesMode = GetArchiveIncomparablePreferences();
                    break;
                case PreferenceSet.Jon:
                    preferencesMode = GetJonsPreferences();
                    break;
                case PreferenceSet.Mya:
                    preferencesMode = GetMyasPreferences();
                    break;
                case PreferenceSet.Barra:
                    preferencesMode = GetBarrasPreferences();
                    break;
                case PreferenceSet.All:
                    preferencesMode = GetAllPreferences();
                    break;
                case PreferenceSet.Numeric:
                    preferencesMode = GetNumericPreferences();
                    break;
                case PreferenceSet.NumericIncomparable:
                    preferencesMode = GetNumericIncomparablePreferences();
                    break;
                case PreferenceSet.Categoric:
                    preferencesMode = GetCategoricalPreferences();
                    break;
                case PreferenceSet.CategoricIncomparable:
                    preferencesMode = GetCategoricalIncomparablePreferences();
                    break;
                case PreferenceSet.MinCardinality:
                    preferencesMode = GetMinimalCardinalityPreferences();
                    break;
                case PreferenceSet.LowCardinality:
                    preferencesMode = GetLowCardinalityPreferences();
                    break;
                case PreferenceSet.HighCardinality:
                    preferencesMode = GetHighCardinalityPreferences();
                    break;
                case PreferenceSet.LowAndHighCardinality:
                    preferencesMode = GetLowAndHighCardinalityPreferences();
                    break;
                case PreferenceSet.ForRandom10:
                    preferencesMode = Get10ForRandomPreferences();
                    break;
                case PreferenceSet.ForRandom17:
                    preferencesMode = Get17ForRandomPreferences();
                    break;
            }

            //Calculate correlationmatrix and cardinality from the preferences
            ArrayList correlationMatrix = GetCorrelationMatrix(preferencesMode);
            ArrayList listCardinality = GetCardinalityOfPreferences(preferencesMode);

            //Depending on the mode create the sets from the preferences
            if (Mode == PreferenceChooseMode.Combination)
            {
                //Tests every possible combination with y preferences from the whole set of preferences

                if (MaxDimensions > preferencesMode.Count)
                {
                    Debug.WriteLine("Combination with more dimensions than preferences. Please reduce dimensions!");
                    return;
                }

                //create all possible combinations and add it to listPreferences
                for (int i = MinDimensions; i <= MaxDimensions; i++)
                {
                    GetCombinations(preferencesMode, i, 0, new ArrayList(), ref listPreferences);
                }

            }
            else if (Mode == PreferenceChooseMode.SameOrder)
            {
                int draws = MaxDimensions - MinDimensions + 1;
                //Tests x times randomly y preferences
                for (int iChoose = 0; iChoose < draws; iChoose++)
                {
                    ArrayList preferencesRandom = new ArrayList();
                    ArrayList preferencesChoose = (ArrayList)preferencesMode.Clone();

                    //First define define randomly how many dimensions
                    int sampleDimensions = iChoose + MinDimensions;

                    //Choose x preferences randomly
                    for (int i = 0; i < sampleDimensions; i++)
                    {
                        preferencesRandom.Add(preferencesChoose[i]);
                    }

                    //add random preferences to listPreferences
                    listPreferences.Add(preferencesRandom);

                }

            }
            else if (Mode == PreferenceChooseMode.Shuffle)
            {
                //Tests x times randomly y preferences
                for (int iChoose = 0; iChoose < _randomDraws; iChoose++)
                {
                    ArrayList preferencesRandom = new ArrayList();
                    ArrayList preferencesChoose = (ArrayList)preferencesMode.Clone();

                    //First define define randomly how many dimensions
                    int differentDimensions = MaxDimensions - MinDimensions + 1;
                    int sampleDimensions = Rnd.Next(differentDimensions) + MinDimensions;

                    //Choose x preferences randomly
                    for (int i = 0; i < sampleDimensions; i++)
                    {
                        int r = Rnd.Next(preferencesChoose.Count);
                        preferencesRandom.Add(preferencesChoose[r]);
                        preferencesChoose.RemoveAt(r);
                    }

                    //add random preferences to listPreferences
                    listPreferences.Add(preferencesRandom);

                }

            }
            else if (Mode == PreferenceChooseMode.Correlation)
            {
                if (MaxDimensions > 2)
                {
                    Debug.WriteLine("This test mode only works for 2 dimensions!");
                    return;
                }

                //Sort correlations to find the strongest
                correlationMatrix.Sort(new CorrelationModel());

                //Sort correlations ascending
                CorrelationModel model = (CorrelationModel)correlationMatrix[0];
                preferencesMode.Clear();
                preferencesMode.Add(model.ColA);
                preferencesMode.Add(model.ColB);
                listPreferences.Add(preferencesMode);

            }
            else if (Mode == PreferenceChooseMode.AntiCorrelation)
            {
                if (MaxDimensions > 2)
                {
                    Debug.WriteLine("This test mode only works for 2 dimensions!");
                    return;
                }

                //Sort correlations ascending
                correlationMatrix.Sort(new CorrelationModel());

                //Take only the two preferences with the worst correlation
                CorrelationModel model = (CorrelationModel)correlationMatrix[correlationMatrix.Count - 1];
                preferencesMode.Clear();
                preferencesMode.Add(model.ColA);
                preferencesMode.Add(model.ColB);
                listPreferences.Add(preferencesMode);

            }
            else if (Mode == PreferenceChooseMode.Independent)
            {
                if (MaxDimensions > 2)
                {
                    Debug.WriteLine("This test mode only works for 2 dimensions!");
                    return;
                }

                //Sort correlations to find the strongest
                correlationMatrix.Sort(new CorrelationModel());

                //Find the most independent atributes (closest to zero)
                CorrelationModel modelBefore = new CorrelationModel();
                CorrelationModel modelAfter = new CorrelationModel();
                for (int i = 0; i <= correlationMatrix.Count; i++)
                {
                    CorrelationModel model = (CorrelationModel)correlationMatrix[i];
                    if (model.Correlation > 0)
                    {
                        //continue until the correlation turnaround
                        modelBefore = model;
                    }
                    else
                    {
                        modelAfter = model;
                        //Leave the function, because now the correlation is getting worse
                        break;
                    }
                }

                //Add the two preferences to the list, that are closer to zero
                preferencesMode.Clear();
                if (Math.Abs(modelBefore.Correlation) > Math.Abs(modelAfter.Correlation))
                {
                    preferencesMode.Add(modelAfter.ColA);
                    preferencesMode.Add(modelAfter.ColB);
                }
                else
                {
                    preferencesMode.Add(modelBefore.ColA);
                    preferencesMode.Add(modelBefore.ColB);
                }
                listPreferences.Add(preferencesMode);

            }

            List<SkylineStrategy> listStrategy = new List<SkylineStrategy>();
            if (Strategy == null)
            {
                //If no strategy is defined --> Take all possible algorithms
                //listStrategy.Add(new SkylineSQL());
                listStrategy.Add(new SkylineBNLSort());
                listStrategy.Add(new SkylineBNLSort());
                listStrategy.Add(new SkylineDQ());
                listStrategy.Add(new SkylineHexagon());
                listStrategy.Add(new SkylineDecisionTree());
            }
            else
            {
                listStrategy.Add(Strategy);
            }

            //Generates the R-Commands for the rpref package (for testig exactly the same statements in rpref)
            if (WriteRCommand)
            {
                StringBuilder sb = new StringBuilder();
                sb.AppendLine("---------------------------------------------");
                sb.AppendLine("-----------------R-Commands------------------");
                sb.AppendLine("---------------------------------------------");

                sb.AppendLine("library(rPref)");
                sb.AppendLine("setwd(\"E:\\\\Projekte\\\\prefSQL_Paper\\\\Test Scalagon\")");
                sb.AppendLine("mydata = read.csv(\"cars_all.csv\", sep=\";\")");

                sb.AppendLine("skylinesize <- array(" + listPreferences.Count + ":1)");
                sb.AppendLine("timeins <- array(" + listPreferences.Count + ":1)");

                for (int iPreferenceIndex = 0; iPreferenceIndex < listPreferences.Count; iPreferenceIndex++)
                {
                    ArrayList preferences = (ArrayList)listPreferences[iPreferenceIndex];
                    ArrayList subPreferences = preferences; //.GetRange(0, i);

                    sb.Append("time = system.time(sky1 <- psel(mydata, ");

                    foreach(String pref in preferences) {
                        String rCommand = "";

                        if(pref.IndexOf("cars.") == -1) {
                            //Categorical preferences
                            //String tableName = pref.Substring(0, pref.IndexOf("."));
                            rCommand = "low(" + pref.Substring(0, pref.IndexOf(" (")).Replace(".name", "") + ")";
                            /*preferences.Add("colors.name ('red' >> 'blue' >> 'green' >> 'gold' >> 'black' >> 'gray' >> 'bordeaux' >> OTHERS EQUAL)");
                            preferences.Add("bodies.name ('bus' >> 'cabriolet' >> 'limousine' >> 'coupé' >> 'van' >> 'estate car' >> OTHERS EQUAL)");
                            preferences.Add("fuels.name ('petrol' >> 'diesel' >> 'bioethanol' >> 'electro' >> 'gas' >> 'hybrid' >> OTHERS EQUAL)");
                            preferences.Add("makes.name ('BENTLEY' >> 'DAIMLER' >> 'FIAT'>> 'FORD'  >> OTHERS EQUAL)");
                            preferences.Add("conditions.name ('new' >> 'occasion' >> 'demonstration car' >> 'oldtimer' >> OTHERS EQUAL)");
                            preferences.Add("drives.name ('front wheel' >> 'all wheel' >> 'rear wheel' >> OTHERS EQUAL)");
                            preferences.Add("transmissions.name ('manual' >> 'automatic' >> OTHERS EQUAL)");*/
                        }
                        else
                        {
                            //Numeric preference
                            if (pref.IndexOf("LOW") > 0)
                            {
                                //LOW preference
                                rCommand = "low(" + pref.Substring(0, pref.IndexOf(" ")).Replace("cars.", "") +")";
                            }
                            else
                            {
                                //HIGH preferences
                                rCommand = "high(" + pref.Substring(0, pref.IndexOf(" ")).Replace("cars.", "") + ")";
                            }
                        }

                        sb.Append(rCommand);
                        //Don't add * on last record
                        if (pref != (string)preferences[preferences.Count-1])
                        {
                            sb.Append(" * ");
                        }

                    }
                    sb.AppendLine("))");
                    sb.AppendLine("timeins[" + (iPreferenceIndex + 1) + "] = time[3]");
                    sb.AppendLine("skylinesize[" + (iPreferenceIndex + 1) + "] = nrow(sky1)");
                    sb.AppendLine("skylinesize[" + (iPreferenceIndex + 1) + "]");
                    sb.AppendLine("timeins[" + (iPreferenceIndex + 1) + "]");

                    //string strSkylineOf = "SKYLINE OF " + string.Join(",", (string[])subPreferences.ToArray(Type.GetType("System.String")));
                    //sb.AppendLine(strSkylineOf);
                }

                sb.AppendLine("mean(skylinesize)");
                sb.AppendLine("min(skylinesize)");
                sb.AppendLine("max(skylinesize)");
                sb.AppendLine("var(skylinesize)");
                sb.AppendLine("sd(skylinesize)");

                sb.AppendLine("mean(timeins)");
                sb.AppendLine("min(timeins)");
                sb.AppendLine("max(timeins)");
                sb.AppendLine("var(timeins)");
                sb.AppendLine("sd(timeins)");

                sb.AppendLine("---------------------------------------------");
                sb.AppendLine("---------------------------------------------");
                sb.AppendLine("---------------------------------------------");
                sb.AppendLine("");
                sb.AppendLine("");

                Debug.Write(sb.ToString());

                //create filename
                string strFileName = Path + "AllShuffle_RCommands" + DateTime.Now.Ticks + ".txt";

                StreamWriter outfile = new StreamWriter(strFileName);
                outfile.Write(sb.ToString());
                outfile.Close();
            }

            int iStrategy = 0;
            foreach(SkylineStrategy currentStrategy in listStrategy)
            {
                //Take all strategies

                //BNL with attributeposition sorting and bnl with entropy function sorting
                //For testing the BNL automatically (shuffle mode), once with attributeposition and once with entropy function
                if (iStrategy == 1)
                {
                    WindowSort = SQLCommon.Ordering.AttributePosition;
                }
                iStrategy++;

                StringBuilder sb = new StringBuilder();
                string strSeparatorLine;
                if (Sampling)
                {
                    strSeparatorLine = PerformanceSampling.GetSeparatorLine(ExcessiveTests);
                }
                else
                {
                     strSeparatorLine = FormatLineString('-', "", "", "", "", "", "", "", "", "", "", "");
                }

                if (GenerateScript == false)
                {
                    //Header
                    sb.AppendLine("                    Path: " + Path);
                    sb.AppendLine("               Algorithm: " + currentStrategy);
                    sb.AppendLine("                 Use CLR: " + UseCLR);
                    sb.AppendLine("          Preference Set: " + Set.ToString());
                    sb.AppendLine("         Preference Mode: " + Mode.ToString());
                    sb.AppendLine("                    Host: " + Environment.MachineName);
                    sb.AppendLine("      Set of Preferences: " + listPreferences.Count);
                    sb.AppendLine("                  Trials: " + Trials);
                    sb.AppendLine("              Table size: " + TableSize.ToString());
                    sb.AppendLine("          Dimension from: " + MinDimensions.ToString());
                    sb.AppendLine("            Dimension to: " + MaxDimensions.ToString());
                    sb.AppendLine("        BNL Initial Sort: " + WindowSort.ToString());
                    sb.AppendLine("     BNL Window Handling: " + WindowHandling.ToString());
                    //sb.AppendLine("Correlation Coefficients:" + string.Join(",", (string[])preferences.ToArray(Type.GetType("System.String"))));
                    //sb.AppendLine("           Cardinalities:" + string.Join(",", (string[])preferences.ToArray(Type.GetType("System.String"))));
                    if (Sampling)
                    {
                        sb.AppendLine("                Sampling: true");
                        sb.AppendLine("           Subsets Count: " + SamplingSubsetsCount);
                        sb.AppendLine("        Subset Dimension: " + SamplingSubsetDimension);
                        sb.AppendLine("           Sampling Runs: " + SamplingSamplesCount);
                    }
                    sb.AppendLine("");
                    if (Sampling)
                    {
                        sb.AppendLine(PerformanceSampling.GetHeaderLine());
                    }
                    else
                    {
                        sb.AppendLine(FormatLineString(' ', "preference set", "trial", "dimensions", "skyline size", "time total", "time algorithm", "min correlation", "max correlation", "product cardinality", "number of moves", "number of comparisons"));
                    }
                    sb.AppendLine(strSeparatorLine);
                    Debug.Write(sb);
                }

                List<long> reportDimensions = new List<long>();
                List<long> reportSkylineSize = new List<long>();
                List<long> reportTimeTotal = new List<long>();
                List<long> reportTimeAlgorithm = new List<long>();
                List<long> reportNumberOfMoves = new List<long>();
                List<long> reportNumberOfComparisons = new List<long>();
                List<double> reportMinCorrelation = new List<double>();
                List<double> reportMaxCorrelation = new List<double>();
                List<double> reportCardinality = new List<double>();

                var perfSampling = new PerformanceSampling(SamplingSubsetsCount, SamplingSubsetDimension, SamplingSamplesCount, ExcessiveTests);

                //For each preference set in the preference list
                for (int iPreferenceIndex = 0; iPreferenceIndex < listPreferences.Count; iPreferenceIndex++)
                {
                    ArrayList preferences = (ArrayList)listPreferences[iPreferenceIndex];
                    //Go only down two 3 dimension (because there are special algorithms for 1 and 2 dimensional skyline)
                    //for (int i = MinDimensions; i <= preferences.Count; i++)
                    //{
                    //ADD Preferences to SKYLINE
                    ArrayList subPreferences = preferences; //.GetRange(0, i);
                    string strSkylineOf = "SKYLINE OF " + string.Join(",", (string[])subPreferences.ToArray(Type.GetType("System.String")));

                    //SELECT FROM
                    string strSQL = "SELECT cars.id FROM ";
                    if (TableSize == Size.Small)
                    {
                        strSQL += "cars_small";
                    }
                    else if (TableSize == Size.Medium)
                    {
                        strSQL += "cars_medium";
                    }
                    else if (TableSize == Size.Large)
                    {
                        strSQL += "cars_large";
                    }
                    if (!UseNormalizedValues)
                    {
                        strSQL += " cars ";
                    }
                    else
                    {
                        strSQL += "cars_normalized cars ";
                    }

                    //Add Joins
                    strSQL += GetJoinsForPreferences(strSkylineOf);

                    //Add Skyline-Clause
                    strSQL += strSkylineOf;

                    //Convert to real SQL
                    parser = new SQLCommon();
                    parser.SkylineType = currentStrategy;
                    parser.ShowInternalAttributes = true;
                    parser.WindowHandling = WindowHandling;
                    parser.WindowSort = WindowSort;

                    if (GenerateScript == false)
                    {
                        for (int iTrial = 0; iTrial < Trials; iTrial++)
                        {
                            Stopwatch sw = new Stopwatch();

                            try
                            {
                                double minCorrelation = 0;
                                double maxCorrelation = 0;

                                SearchCorrelation(subPreferences, correlationMatrix, ref minCorrelation, ref maxCorrelation);
                                double cardinality = SearchCardinality(subPreferences, listCardinality);
                                long timeAlgorithm = 0;
                                long skylineSize = 0;
                                long numberOfMoves = 0;
                                long numberOfComparisons = 0;

                                if (Sampling)
                                {
                                    string strTrial = iTrial + 1 + " / " + _trials;
                                    string strPreferenceSet = iPreferenceIndex + 1 + " / " + listPreferences.Count;
                                    Console.WriteLine(strPreferenceSet);

                                    string strLine = perfSampling.MeasurePerformance(iTrial, iPreferenceIndex, listPreferences, preferences, parser, sw, reportDimensions, reportSkylineSize, reportTimeTotal, reportTimeAlgorithm, reportMinCorrelation, reportMaxCorrelation, minCorrelation, maxCorrelation, reportCardinality, cardinality, strSQL, strPreferenceSet, strTrial, reportNumberOfMoves, numberOfMoves, reportNumberOfComparisons, numberOfComparisons);

                                    Debug.WriteLine(strLine);
                                    sb.AppendLine(strLine);
                                }
                                else
                                {
                                    sw.Start();

                                    ArrayList clauseID = new ArrayList();
                                    String strIDs = "";
                                    for (int skylineLevel = 1; skylineLevel <= SkylineUpToLevel; skylineLevel++)
                                    {
                                        if (UseCLR)
                                        {
                                            string strSP = parser.ParsePreferenceSQL(strSQL);
                                            SqlDataAdapter dap = new SqlDataAdapter(strSP, cnnSQL);
                                            dt.Clear(); //clear datatable
                                            dap.Fill(dt);
                                        }
                                        else
                                        {
                                            parser.Cardinality = (long)cardinality;

                                            string strSQLWithWHERE = strSQL;
                                            strSQLWithWHERE = strSQL.Substring(0, strSQL.IndexOf("SKYLINE OF"));
                                            strSQLWithWHERE += strIDs;
                                            strSQLWithWHERE += strSQL.Substring(strSQL.IndexOf("SKYLINE OF"));
                                            dt = parser.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, strSQLWithWHERE);

                                        }

                                        timeAlgorithm += parser.TimeInMilliseconds;
                                        numberOfMoves += parser.NumberOfMoves;
                                        numberOfComparisons += parser.NumberOfComparisons;

                                        skylineSize += dt.Rows.Count;

                                        //only if more queries are requested

                                        if (skylineLevel < SkylineUpToLevel && currentStrategy.GetType() != typeof(prefSQL.SQLSkyline.MultipleSkylineBNL))
                                        {
                                            //Add ids to WHERE clause
                                            foreach (DataRow row in dt.Rows)
                                            {
                                                clauseID.Add((int)row[0]);
                                            }

                                            //Add WHERE clause with IDs that were already in the skyline
                                            strIDs = "";
                                            foreach (int id in clauseID)
                                            {
                                                strIDs += id + ",";
                                            }
                                            if (strIDs.Length > 0)
                                            {
                                                strIDs = "WHERE cars.id NOT IN (" + strIDs.TrimEnd(',') + ") ";
                                            }

                                        }
                                        else
                                        {
                                            skylineLevel = SkylineUpToLevel;
                                        }

                                    }

                                    sw.Stop();

                                    reportDimensions.Add(preferences.Count);
                                    reportSkylineSize.Add(skylineSize);
                                    reportTimeTotal.Add(sw.ElapsedMilliseconds);
                                    reportTimeAlgorithm.Add(timeAlgorithm);
                                    reportNumberOfMoves.Add(numberOfMoves);
                                    reportNumberOfComparisons.Add(numberOfComparisons);
                                    reportMinCorrelation.Add(minCorrelation);
                                    reportMaxCorrelation.Add(maxCorrelation);
                                    reportCardinality.Add(cardinality);

                                    //trial|dimensions|skyline size|time total|time algorithm
                                    string strTrial = iTrial + 1 + " / " + _trials;
                                    string strPreferenceSet = iPreferenceIndex + 1 + " / " + listPreferences.Count;
                                    Console.WriteLine(strPreferenceSet);

                                    string strLine = "";

                                    //Was there an error?
                                    if (dt.Rows.Count == 0)
                                    {
                                        strLine = FormatLineString("Error! " + strPreferenceSet, strTrial, preferences.Count, dt.Rows.Count, sw.ElapsedMilliseconds, timeAlgorithm, minCorrelation, maxCorrelation, cardinality, numberOfMoves, numberOfComparisons);
                                    }
                                    else
                                    {
                                        strLine = FormatLineString(strPreferenceSet, strTrial, preferences.Count, dt.Rows.Count, sw.ElapsedMilliseconds, timeAlgorithm, minCorrelation, maxCorrelation, cardinality, numberOfMoves, numberOfComparisons);
                                    }

                                    Debug.WriteLine(strLine);
                                    sb.AppendLine(strLine);
                                }
                            }
                            catch (Exception e)
                            {
                                Debug.WriteLine(e.Message);
                                return;
                            }
                        }
                    }
                    else
                    {

                        strSQL = parser.ParsePreferenceSQL(strSQL);

                        string[] sizes = { "small", "medium", "large", "superlarge" };

                        //Format for each of the customer profiles
                        sb.AppendLine("PRINT '----- -------------------------------------------------------- ------'");
                        sb.AppendLine("PRINT '----- " + (preferences.Count + 1) + " dimensions  ------'");
                        sb.AppendLine("PRINT '----- -------------------------------------------------------- ------'");
                        foreach (string size in sizes)
                        {
                            sb.AppendLine("GO"); //we need this in order the profiler shows each query in a new line
                            sb.AppendLine(strSQL.Replace("cars", "cars_" + size));

                        }

                    }

                    //}

                }

                ////////////////////////////////
                //Summary
                ///////////////////////////////
                if (GenerateScript == false)
                {
                    if (Sampling)
                    {
                        perfSampling.AddSummary(sb, strSeparatorLine, reportDimensions, reportSkylineSize, reportTimeTotal, reportTimeAlgorithm, reportMinCorrelation, reportMaxCorrelation, reportCardinality, reportNumberOfMoves, reportNumberOfComparisons);
                        perfSampling.AddPreferenceSetInformation(sb, listPreferences, strSeparatorLine);
                    }
                    else
                    {
                        AddSummary(sb, strSeparatorLine, reportDimensions, reportSkylineSize, reportTimeTotal, reportTimeAlgorithm, reportMinCorrelation, reportMaxCorrelation, reportCardinality, reportNumberOfMoves, reportNumberOfComparisons);
                    }
                }

                //Write some empty lines (clarification in output window)
                Debug.WriteLine("");
                Debug.WriteLine("");
                Debug.WriteLine("");

                //Write in file
                string strFiletype;

                if (GenerateScript == false)
                {
                    strFiletype = ".txt";
                }
                else
                {
                    strFiletype = ".sql";
                }
                //create filename
                string strFileName = Path + Set.ToString() + "_" + Mode.ToString() + "_" + MinDimensions + "_" + MaxDimensions + "_" + currentStrategy + DateTime.Now.Ticks + strFiletype;

                StreamWriter outfile = new StreamWriter(strFileName);
                outfile.Write(sb.ToString());
                outfile.Close();
            }

            //close connection
            if (UseCLR)
            {
                cnnSQL.Close();
            }
        }
Ejemplo n.º 3
0
        public void TestSkylineAmountOfTupelsDataTable()
        {
            string skylineSampleSql = TestContext.DataRow["skylineSQL"].ToString();

            SQLCommon common = new SQLCommon();
            common.SkylineType = new SkylineSQL();
            PrefSQLModel model = common.GetPrefSqlModelFromPreferenceSql(skylineSampleSql);
            DataTable dtNative = common.ExecuteFromPrefSqlModel(Helper.ConnectionString, Helper.ProviderName, model);
            common.SkylineType = new SkylineBNL();
            DataTable dtBNL = common.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, skylineSampleSql);
            common.SkylineType = new SkylineBNLSort();
            DataTable dtBNLSort = common.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, skylineSampleSql);

            DataTable dtHexagon = new DataTable();
            if (model.ContainsOpenPreference == false)
            {
                common.SkylineType = new SkylineHexagon();
                dtHexagon = common.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, skylineSampleSql);
            }

            DataTable dtDQ = new DataTable();
            //D&Q does not work with incomparable tuples
            if (model.WithIncomparable == false)
            {
                common.SkylineType = new SkylineDQ();
                dtDQ = common.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, skylineSampleSql);
            }

            int currentDataRowIndex = TestContext.DataRow.Table.Rows.IndexOf(TestContext.DataRow);

            //Check tuples (every algorithm should deliver the same amount of tuples)
            Assert.AreEqual(dtNative.Rows.Count, dtBNL.Rows.Count, 0,
                "BNL Amount of tupels in query " + currentDataRowIndex + " do not match");
            Assert.AreEqual(dtNative.Rows.Count, dtBNLSort.Rows.Count, 0,
                "BNLSort Amount of tupels in query " + currentDataRowIndex + " do not match");

            //Hexagon cannot handle Categorical preference that have no explicit OTHERS
            if (model.ContainsOpenPreference == false)
            {
                Assert.AreEqual(dtNative.Rows.Count, dtHexagon.Rows.Count, 0,
                    "Hexagon Amount of tupels in query " + currentDataRowIndex + " do not match");
            }
            //D&Q does not work with incomparable tuples
            if (model.WithIncomparable == false)
            {
                Assert.AreEqual(dtNative.Rows.Count, dtDQ.Rows.Count, 0,
                    "D&Q Amount of tupels in query " + currentDataRowIndex + " do not match");
            }
        }
Ejemplo n.º 4
0
        public void TestIssue54()
        {
            string prefSQL = "SELECT c.Title AS Name, c.Price, c.Consumption, m.Name AS Manufacturer, b.Name AS Body "
                              + "FROM Cars c "
                              + "LEFT OUTER JOIN Makes m ON c.Make_Id = m.Id "
                              + "LEFT OUTER JOIN Bodies b ON c.Body_Id = b.Id "
                              + "WHERE m.Name = 'VW' AND b.Name = 'Bus' "
                              + "SKYLINE OF c.Price LOW 1000 EQUAL, c.Consumption LOW";

            var common = new SQLCommon
            {
                SkylineType = new SkylineBNL(),
                ShowInternalAttributes = true
            };

            try
            {
                //If there is no exception in the execution of this query the test is successful
                DataTable dt = common.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, prefSQL);
                Assert.IsTrue(true);
            }
            catch
            {
                Assert.IsFalse(true);
            }
        }
Ejemplo n.º 5
0
        public void Run()
        {
            try
            {

                //SKYLINE Queries

                //string strPrefSQL = "SELECT t.id                           FROM cars t SKYLINE OF t.price LOW, t.mileage LOW";
                //string strPrefSQL = "select cars.id from cars";
                //string strPrefSQL = "SELECT *                           FROM cars t WHERE t.doors = 5 SKYLINE OF t.price LOW, t.mileage LOW, t.horsepower HIGH, t.consumption LOW, t.registrationnumeric HIGH";
                //string strPrefSQL = "SELECT t.title AS Modellname, t.price AS Preis, t.consumption AS Verbrauch FROM cars t LEFT OUTER JOIN Makes m ON t.make_id = m.id LEFT OUTER JOIN Bodies b ON t.body_id = b.id WHERE m.name = 'VW' AND b.name = 'Bus' SKYLINE OF t.price LOW 1000 EQUAL, t.consumption LOW";
                //string strPrefSQL = "SELECT t.id, t.title, t.price, c.name, t.enginesize FROM cars t LEFT OUTER JOIN colors c ON t.color_id = c.id SKYLINE OF t.price LOW, c.name ('pink' >> 'black' >> OTHERS INCOMPARABLE), t.enginesize HIGH ORDER BY BEST_RANK()";
                //string strPrefSQL = "SELECT t.id, t.title, t.price, c.name, t.enginesize FROM cars t LEFT OUTER JOIN colors c ON t.color_id = c.id SKYLINE OF t.price LOW, c.name (OTHERS EQUAL >> 'pink' >> 'red'), t.enginesize HIGH ORDER BY SUM_RANK()";
                //string strPrefSQL = "SELECT t.id, t.title, t.price         FROM cars t SKYLINE OF t1.price LOW, t1.mileage LOW ORDER BY BEST_RANK()";
                //string strPrefSQL = "SELECT t.id, t.price, t.mileage       FROM cars t SKYLINE OF t1.price LOW, t1.mileage LOW ORDER BY SUM_RANK()";

                //string strPrefSQL = "SELECT t.id, t.title, bodies.name AS Chassis, t.price, fuels.name                        FROM cars t LEFT OUTER JOIN fuels ON t.fuel_id = fuels.ID LEFT OUTER JOIN bodies ON t.body_id = bodies.ID SKYLINE OF bodies.name ('bus' >> OTHERS EQUAL) IS MORE IMPORTANT THAN t.price LOW, fuels.name ('petrol' >> OTHERS EQUAL)";
                //string strPrefSQL = "SELECT t.id, t.title, t.price, t.mileage, t.enginesize                    FROM cars t SKYLINE OF t.mileage LOW IS MORE IMPORTANT THAN t.price LOW, t.engineszie HIGH ";

                //SKYLINE Queries with JOINS
                //string strPrefSQL = "SELECT c.id, c.price, b.name          FROM cars t LEFT OUTER JOIN bodies b ON c.body_id = b.ID SKYLINE OF c.price LOW, b.name ('Bus' >> 'Kleinwagen')";
                //string strPrefSQL = "SELECT c.id, c.price                  FROM cars t LEFT OUTER JOIN colors cc ON c.color_id = cc.id SKYLINE OF c.horsepower HIGH, cc.name ('red' >> 'blue' >> 'yellow')";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t LEFT OUTER JOIN colors ON t1.color_id = colors.ID SKYLINE OF t1.price LOW, colors.name ('red' >> 'blue' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t LEFT OUTER JOIN colors ON t1.color_id = colors.ID SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower HIGH, t1.enginesize HIGH, t1.doors HIGH, t1.consumption LOW, t1.cylinders HIGH, colors.name ('red' >> 'blue' >> 'yellow' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t LEFT OUTER JOIN colors ON t1.color_id = colors.ID SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower HIGH, t1.enginesize HIGH, t1.doors HIGH, t1.consumption LOW, t1.cylinders HIGH";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.pric       FROM cars t LEFT OUTER JOIN colors ON t1.color_id = colors.ID WHERE t1.price < 10000 SKYLINE OF t1.price LOW, colors.name ('red' >> 'blue' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t LEFT OUTER JOIN colors ON t1.color_id = colors.ID WHERE t1.price < 10000 SKYLINE OF t1.price LOW, colors.name (OTHERS INCOMPARABLE >> 'blue' >> 'red')";
                //string strPrefSQL = "SELECT c.id, c.price                  FROM cars t LEFT OUTER JOIN colors cc ON c.color_id = cc.id LEFT OUTER JOIN fuels f ON f.id = c.fuel_id SKYLINE OF c.price LOW 1000 INCOMPARABLE, cc.name ('red' == 'blue' >> OTHERS INCOMPARABLE >> 'gray'), f.name ('petrol' >> OTHERS INCOMPARABLE >> 'diesel')";
                //string strPrefSQL = "SELECT c.title AS Name, c.Price       FROM cars t LEFT OUTER JOIN colors co ON c.color_id = co.ID LEFT OUTER JOIN bodies b ON c.body_id = b.ID SKYLINE OF c.Price LOW, c.Mileage LOW";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t LEFT OUTER JOIN colors ON t1.color_id = colors.ID WHERE t1.price < 10000 SKYLINE OF t1.price LOW, colors.name ('silver' >> 'yellow' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t.id, t.title, t.price         FROM cars t LEFT OUTER JOIN colors ON t.color_id = colors.id SKYLINE OF t.price LOW, t.mileage LOW, colors.name ('red' >> {'blue', 'yellow'} >> OTHERS INCOMPARABLE)";

                //string strPrefSQL = "SELECT t.id                        FROM cars t LEFT OUTER JOIN bodies ON t.body_id = bodies.ID LEFT OUTER JOIN colors ON colors.id = t.color_id SKYLINE OF t.price AROUND 10000, colors.name ('red' >> OTHERS EQUAL), bodies.name ('van' >> 'compact car' >> OTHERS EQUAL) ORDER BY BEST_RANK()";

                //RANKING Queries
                string strPrefSQL = "SELECT t.id, t.title FROM cars t ORDER BY WEIGHTEDSUM (t.price LOW 0.8, t.mileage LOW 0.2)";
                //string strPrefSQL = "SELECT t.id, t.title FROM cars t LEFT OUTER JOIN colors c ON t.color_id = c.id ORDER BY WEIGTHEDSUM (t.price LOW 0.5, c.name ('brown' >> 'green' >> OTHERS EQUAL) 0.5)";

                //Playground --> Test here your queries
                //string strPrefSQL = "SELECT c.id, c.price, b.name          FROM cars_small c   LEFT OUTER JOIN bodies b ON c.body_id = b.ID SKYLINE OF c.price LOW, b.name ('Bus' >> 'Kleinwagen')";
                //string strPrefSQL = "SELECT c.id, c.price                  FROM cars_small c   LEFT OUTER JOIN colors cc ON c.color_id = cc.id ORDER BY WEIGHTEDSUM (c.price LOW 0.5, cc.name ('brown' >> 'green') 0.5)";
                //string strPrefSQL = "SELECT c.id, c.price                  FROM cars_small c   LEFT OUTER JOIN colors cc ON c.color_id = cc.id SKYLINE OF c.horsepower HIGH, cc.name ('red' >> 'blue' >> 'yellow')";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars_small t1  LEFT OUTER JOIN colors ON t1.color_id = colors.ID SKYLINE OF t1.price LOW, colors.name ('red' >> 'blue' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id                          FROM cars t1        ORDER BY WEIGHTEDSUM (t1.price HIGH 0.5, t1.mileage HIGH 0.5, t1.horsepower LOW 0.5, t1.enginesize LOW 0.5, t1.consumption HIGH 0.5, t1.doors LOW 0.5, t1.cylinders LOW 0.5)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t1        LEFT OUTER JOIN colors ON t1.color_id = colors.ID SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower HIGH, t1.enginesize HIGH, t1.doors HIGH, t1.consumption LOW, t1.cylinders HIGH, colors.name ('red' >> 'blue' >> 'yellow' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t1        SKYLINE OF t1.price LOW, t1.mileage LOW ORDER BY BEST_RANK()";
                //string strPrefSQL = "SELECT t1.id                          FROM cars t1        SKYLINE OF t1.price LOW, t1.mileage LOW";
                //string strPrefSQL = "SELECT cars.id, cars.consumption      FROM cars           SKYLINE OF cars.consumption LOW, cars.enginesize HIGH, cars.price LOW";
                //string strPrefSQL = "SELECT *                              FROM cars           SKYLINE OF cars.registrationnumeric HIGH, cars.mileage LOW, cars.horsepower HIGH 100 EQUAL";
                //string strPrefSQL = "SELECT cars.id, cars.horsepower       FROM cars           SKYLINE OF cars.horsepower HIGH, cars.mileage LOW";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t1        LEFT OUTER JOIN colors ON t1.color_id = colors.ID SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower HIGH, t1.enginesize HIGH, t1.doors HIGH, t1.consumption LOW, t1.cylinders HIGH";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price, t1.mileage, t1.enginesize           FROM cars t1        SKYLINE OF t1.price LOW, t1.mileage LOW, t1.enginesize HIGH ORDER BY SUM_RANK()";
                //string strPrefSQL = "SELECT t1.id                          FROM cars t1  SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower HIGH, t1.enginesize HIGH, t1.doors HIGH, t1.consumption LOW, t1.cylinders HIGH";
                //string strPrefSQL = "SELECT t1.id                          FROM cars_norm t1   SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower LOW, t1.enginesize LOW, t1.doors LOW, t1.consumption LOW, t1.cylinders LOW";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price      FROM cars t1        SKYLINE OF t1.price LOW, t1.mileage LOW ORDER BY BEST_RANK()";
                //string strPrefSQL = "SELECT t1.id AS ID, t1.title, t1.price FROM cars_small t1 SKYLINE OF t1.price LOW, t1.title ('hans' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price, t1.mileage, colors.name FROM cars_small t1 LEFT OUTER JOIN colors ON t1.color_id = colors.ID WHERE t1.price < 10000 SKYLINE OF t1.price LOW, colors.name ('red' >> 'blue' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price, t1.mileage, colors.name FROM cars_small t1 LEFT OUTER JOIN colors ON t1.color_id = colors.ID WHERE t1.price < 10000 SKYLINE OF t1.price LOW, colors.name (OTHERS INCOMPARABLE >> 'blue' >> 'red')";
                //string strPrefSQL = "SELECT * FROM cars_small cs SKYLINE OF cs.price LOW, cs.mileage LOW SAMPLE BY RANDOM_SUBSETS COUNT 2 DIMENSION 1";
                //string strPrefSQL = "SELECT t1.id, t1.price, t1.mileage FROM cars_small t1 SKYLINE OF t1.price LOW, t1.mileage LOW";
                //string strPrefSQL = "SELECT t1.id, t1.price, t1.mileage FROM cars_small t1 SKYLINE OF t1.price LOW, t1.mileage LOW ORDER BY SUM_RANK()";
                //string strPrefSQL = "SELECT t1.id                          FROM cars t1  SKYLINE OF t1.price LOW, t1.mileage LOW, t1.horsepower HIGH, t1.enginesize HIGH, t1.doors HIGH, t1.consumption LOW";

                //string strPrefSQL = "SELECT c.id, c.price                  FROM cars_medium c   LEFT OUTER JOIN colors cc ON c.color_id = cc.id LEFT OUTER JOIN fuels f ON f.id = c.fuel_id SKYLINE OF c.price LOW 1000 INCOMPARABLE, cc.name ('red' == 'blue' >> OTHERS INCOMPARABLE >> 'gray'), f.name ('petrol' >> OTHERS INCOMPARABLE >> 'diesel')";
                //string strPrefSQL = "SELECT c.title AS Name, c.Price, c.Mileage, co.Name AS Color, b.Name AS Body FROM Cars AS c LEFT OUTER JOIN colors co ON c.color_id = co.ID LEFT OUTER JOIN bodies b ON c.body_id = b.ID SKYLINE OF c.Price LOW, c.Mileage LOW";

                //string strPrefSQL = "SELECT t.id FROM cars t SKYLINE OF t.price LOW, t.mileage LOW";
                //string strPrefSQL = "SELECT t1.id, t1.title, t1.price, colors.name FROM cars t1 LEFT OUTER JOIN colors ON t1.color_id = colors.ID WHERE t1.price < 10000 SKYLINE OF t1.price LOW, colors.name ('silver' >> 'yellow' >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT cars.id, cars.title FROM  cars SKYLINE OF cars.price LOW,cars.mileage LOW,cars.horsepower HIGH,cars.enginesize HIGH,cars.consumption LOW,cars.doors HIGH,cars.seats HIGH";

                //string strPrefSQL = "SELECT t.id, t.title, t.price, colors.name AS colour FROM cars t LEFT OUTER JOIN colors ON t.color_id = colors.id SKYLINE OF t.price LOW, t.mileage LOW, colors.name ('red' >> {'blue', 'yellow'} >> OTHERS INCOMPARABLE)";
                //string strPrefSQL = "SELECT t.id, t.title FROM cars t ORDER BY WEIGHTEDSUM (t.price LOW 0.8, t.mileage LOW 0.2)";

                //string strPrefSQL = "SELECT t.id, t.title  FROM cars t    ORDER BY WEIGHTEDSUM( t.price LOW 0.8, t.mileage LOW 0.2)";

                //Query that results in more than 4000 Characters
                /*string strPrefSQL = "SELECT  t1.id	, t1.title	, t1.price	, t1.mileage	, colors.name FROM cars_small t1 " +
                                    "LEFT OUTER JOIN colors ON t1.color_id = colors.ID " +
                                    "LEFT OUTER JOIN bodies ON t1.body_id = bodies.id " +
                                    "LEFT OUTER JOIN Conditions ON t1.Condition_Id = Conditions.Id " +
                                    "LEFT OUTER JOIN Models ON t1.Model_Id = Models.Id " +
                                    "LEFT OUTER JOIN Makes ON t1.Make_Id = Makes.Id " +
                                    "LEFT OUTER JOIN Drives ON t1.Drive_Id = Drives.Id " +
                                    "LEFT OUTER JOIN Efficiencies ON t1.Efficiency_Id = Efficiencies.Id " +
                                    "LEFT OUTER JOIN Pollutions ON t1.Pollution_Id = Pollutions.Id " +
                                    "LEFT OUTER JOIN Transmissions ON t1.Transmission_Id = Transmissions.Id " +
                                    "LEFT OUTER JOIN Fuels ON t1.Fuel_Id = Fuels.Id " +
                                    "WHERE t1.price < 10000  " +
                                    "SKYLINE OF  " +
                                    "t1.price LOW " +
                                    ", colors.name " +
                                    "(" +
                                    "'anthracite' >> 'beige' >> 'blue' >> 'bordeaux' >> " +
                                    "    'brown' >> 'yellow' >> 'gold' >> 'gray' >> 'green' >> " +
                                    "    'orange' >> 'pink' >> 'red' >> 'black' >> 'silver' >> " +
                                    "    'turquoise' >> 'violet' >> 'white'" +
                                    ") " +

                                    ", bodies.name " +
                                    "(" +
                                    "    'bus' >> 'cabriolet' >> 'coupé' >> 'van' >> " +
                                    "    'compact car' >> 'estate car' >> 'minivan' >> " +
                                    "    'limousine' >> 'pick-up' >> 'scooter' >> 'suv' " +
                                    ")" +
                                    ", fuels.name " +
                                    "(" +
                                    "    'hybrid' >> 'bioethanol' >> 'diesel' >> 'gas' >> " +
                                    "    'electro' >> 'petrol' " +
                                    ")";*/

                //Query with 2 id spalten
                //string strPrefSQL = "SELECT t.id, colors.id as colorid, t.title, t.price, colors.name AS colour FROM cars t LEFT OUTER JOIN colors ON t.color_id = colors.id SKYLINE OF t.price LOW, t.mileage LOW, colors.name ('red' >> 'blue' >> OTHERS EQUAL)";

                Debug.WriteLine(strPrefSQL);
                SQLCommon parser = new SQLCommon();

                //Choose here your algorithm
                parser.SkylineType = new SkylineSQL();
                //parser.SkylineType = new SkylineBNL();
                //parser.SkylineType = new SkylineBNLSort();
                //parser.SkylineType = new SkylineHexagon();
                //parser.SkylineType = new SkylineDQ();
                //parser.SkylineType = new MultipleSkylineBNL();
                //parser.SkylineType = new SkylineDecisionTree();

                //Some other available properties
                parser.ShowInternalAttributes = true;
                parser.SkylineUpToLevel = 1;

                //First parse only (to get the parsed string for CLR)
                Debug.WriteLine(parser.ParsePreferenceSQL(strPrefSQL));

                //Now parse and execute
                Stopwatch sw = new Stopwatch();
                sw.Start();
                DataTable dt = parser.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName, strPrefSQL);
                sw.Stop();

                StringBuilder sb = new StringBuilder();
                sb.AppendLine("------------------------------------------");
                sb.AppendLine("STATISTIC");
                sb.AppendLine("------------------------------------------");
                sb.AppendLine("         skyline size:" + dt.Rows.Count.ToString().PadLeft(6));
                sb.AppendLine("               fields:" + dt.Columns.Count.ToString().PadLeft(6));
                sb.AppendLine("algo  time elapsed ms:" + parser.TimeInMilliseconds.ToString().PadLeft(6));
                sb.AppendLine("total time elapsed ms:" + sw.ElapsedMilliseconds.ToString().PadLeft(6));
                Debug.Write(sb);

            }
            catch (Exception ex)
            {
                Debug.WriteLine("ERROR: " + ex);
            }

            Environment.Exit(0);
        }
Ejemplo n.º 6
0
        internal string MeasurePerformance(int iTrial, int iPreferenceIndex, ArrayList listPreferences,
            ArrayList preferences,
            SQLCommon parser, Stopwatch sw, List<long> reportDimensions, List<long> reportSkylineSize,
            List<long> reportTimeTotal,
            List<long> reportTimeAlgorithm, List<double> reportMinCorrelation, List<double> reportMaxCorrelation, double minCorrelation, double maxCorrelation,
            List<double> reportCardinality, double cardinality,
            string strSQL, string strPreferenceSet, string strTrial, List<long> reportNumberOfMoves, long numberOfMoves, List<long> reportNumberOfComparisons, long numberOfComparisons)
        {
            Dictionary<ClusterAnalysis, List<List<double>>> clusterAnalysis;
            Dictionary<ClusterAnalysis, List<List<double>>> clusterAnalysisMedian;
            Dictionary<ClusterAnalysis, Dictionary<BigInteger, List<double>>> clusterAnalysisTopBuckets;
            Dictionary<ClusterAnalysis, Dictionary<BigInteger, List<double>>> clusterAnalysisMedianTopBuckets;

            List<IEnumerable<CLRSafeHashSet<int>>> producedSubsets =
                ProduceSubsets(preferences);

            InitClusterAnalysisDataStructures(out clusterAnalysis);
            InitClusterAnalysisDataStructures(out clusterAnalysisMedian);
            InitClusterAnalysisTopBucketsDataStructures(
                out clusterAnalysisTopBuckets);
            InitClusterAnalysisTopBucketsDataStructures(
                out clusterAnalysisMedianTopBuckets);

            var entireSkylineDataTable = new DataTable();
            if (ExcessiveTests)
            {
                entireSkylineDataTable =
                parser.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName,
                    strSQL);
            }
            else
            {
                entireSkylineDataTable =
                parser.ParseAndExecutePrefSQL(Helper.ConnectionString, Helper.ProviderName,
                    strSQL+ " SAMPLE BY RANDOM_SUBSETS COUNT " + SubsetsCount +
                      " DIMENSION " + SubsetDimension);
            }

            List<long[]> entireDataTableSkylineValues =
                parser.SkylineType.Strategy.SkylineValues;

            int[] skylineAttributeColumns =
                SkylineSamplingHelper.GetSkylineAttributeColumns(entireSkylineDataTable);

            IReadOnlyDictionary<long, object[]> entireSkylineDatabase =
                prefSQL.SQLSkyline.Helper.GetDatabaseAccessibleByUniqueId(
                    entireSkylineDataTable, 0);
            IReadOnlyDictionary<long, object[]> entireSkylineNormalized =
                prefSQL.SQLSkyline.Helper.GetDatabaseAccessibleByUniqueId(
                    entireSkylineDataTable, 0);
            SkylineSamplingHelper.NormalizeColumns(entireSkylineNormalized,
                skylineAttributeColumns);

            DataTable entireDataTable;
            IReadOnlyDictionary<long, object[]> entireDatabaseNormalized =
                GetEntireDatabaseNormalized(parser, strSQL, skylineAttributeColumns,
                    out entireDataTable);
            IReadOnlyDictionary<long, object[]> entireDatabase =
                prefSQL.SQLSkyline.Helper.GetDatabaseAccessibleByUniqueId(
                    entireDataTable, 0);

            IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                entireDatabaseBuckets =
                    prefSQL.Evaluation.ClusterAnalysis.GetBuckets(entireDatabaseNormalized,
                        skylineAttributeColumns);

            IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                aggregatedEntireDatabaseBuckets =
                    prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(entireDatabaseBuckets);

            foreach (
                KeyValuePair<BigInteger, List<IReadOnlyDictionary<long, object[]>>> s in
                    entireDatabaseBuckets.OrderByDescending(l => l.Value.Count)
                        .ThenBy(l => l.Key).Take(5))
            {
                double percent = (double) s.Value.Count / entireDatabaseNormalized.Count;
                clusterAnalysisTopBuckets[ClusterAnalysis.EntireDb].Add(s.Key,
                    new List<double>());

                for (var i = 0; i < producedSubsets.Count; i++)
                    // to enable generalized average calculation
                {
                    clusterAnalysisTopBuckets[ClusterAnalysis.EntireDb][s.Key]
                        .Add(percent);
                }
            }

            IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                entireSkylineBuckets =
                    prefSQL.Evaluation.ClusterAnalysis.GetBuckets(entireSkylineNormalized,
                        skylineAttributeColumns);

            IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                aggregatedEntireSkylineBuckets =
                    prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(entireSkylineBuckets);

            FillTopBuckets(clusterAnalysisTopBuckets,
                ClusterAnalysis.EntireSkyline, entireSkylineBuckets,
                entireSkylineNormalized.Count, entireDatabaseNormalized.Count,
                entireSkylineNormalized.Count);
            foreach (
                KeyValuePair<BigInteger, List<double>> bucket in
                    clusterAnalysisTopBuckets[ClusterAnalysis.EntireSkyline])
            {
                double percent =
                    clusterAnalysisTopBuckets[ClusterAnalysis.EntireSkyline][
                        bucket.Key][0];

                for (var i = 1; i < producedSubsets.Count; i++)
                    // to enable generalized average calculation
                {
                    clusterAnalysisTopBuckets[ClusterAnalysis.EntireSkyline][
                        bucket.Key].Add(percent);
                }
            }

            var clusterAnalysisForMedian = new prefSQL.Evaluation.ClusterAnalysis(entireDatabaseNormalized,
                skylineAttributeColumns);

            IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                entireDatabaseMedianBuckets =
                    clusterAnalysisForMedian.GetBuckets(entireDatabaseNormalized,
                        skylineAttributeColumns, true);

            IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                aggregatedEntireDatabaseMedianBuckets =
                    prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(entireDatabaseMedianBuckets);

            foreach (
                KeyValuePair<BigInteger, List<IReadOnlyDictionary<long, object[]>>> s in
                    entireDatabaseMedianBuckets.OrderByDescending(l => l.Value.Count)
                        .ThenBy(l => l.Key).Take(5))
            {
                double percent = (double) s.Value.Count / entireDatabaseNormalized.Count;
                clusterAnalysisMedianTopBuckets[ClusterAnalysis.EntireDb].Add(
                    s.Key,
                    new List<double>());

                for (var i = 0; i < producedSubsets.Count; i++)
                    // to enable generalized average calculation
                {
                    clusterAnalysisMedianTopBuckets[ClusterAnalysis.EntireDb][
                        s.Key]
                        .Add(percent);
                }
            }

            IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                entireSkylineMedianBuckets =
                    clusterAnalysisForMedian.GetBuckets(entireSkylineNormalized,
                        skylineAttributeColumns, true);

            IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                aggregatedEntireSkylineMedianBuckets =
                    prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(entireSkylineMedianBuckets);

            FillTopBuckets(clusterAnalysisMedianTopBuckets,
                ClusterAnalysis.EntireSkyline, entireSkylineMedianBuckets,
                entireSkylineNormalized.Count, entireDatabaseNormalized.Count,
                entireSkylineNormalized.Count);

            foreach (
                KeyValuePair<BigInteger, List<double>> bucket in
                    clusterAnalysisMedianTopBuckets[
                        ClusterAnalysis.EntireSkyline])
            {
                double percent =
                    clusterAnalysisMedianTopBuckets[
                        ClusterAnalysis.EntireSkyline][bucket.Key][0];

                for (var i = 1; i < producedSubsets.Count; i++)
                    // to enable generalized average calculation
                {
                    clusterAnalysisMedianTopBuckets[
                        ClusterAnalysis.EntireSkyline][bucket.Key].Add(percent);
                }
            }
            strSQL += " SAMPLE BY RANDOM_SUBSETS COUNT " + SubsetsCount +
                      " DIMENSION " + SubsetDimension;

            string strQuery;
            string operators;
            int numberOfRecords;
            string[] parameter;

            PrefSQLModel prefSqlModel = parser.GetPrefSqlModelFromPreferenceSql(strSQL);
            string ansiSql = parser.GetAnsiSqlFromPrefSqlModel(prefSqlModel);
            prefSQL.SQLParser.Helper.DetermineParameters(ansiSql, out parameter,
                out strQuery, out operators,
                out numberOfRecords);

            var subsetObjects = new List<long>();
            var subsetTime = new List<long>();
            var subsetTimeElapsed = new List<long>();
            var setCoverageSecondRandom = new List<double>();
            var setCoverageSample = new List<double>();
            var setCoverageBestRank = new List<double>();
            var setCoverageSumRank = new List<double>();

            var representationErrorSecondRandom = new List<double>();
            var representationErrorSample = new List<double>();
            var representationErrorBestRank = new List<double>();
            var representationErrorSumRank = new List<double>();

            var representationErrorSumSecondRandom = new List<double>();
            var representationErrorSumSample = new List<double>();
            var representationErrorSumBestRank = new List<double>();
            var representationErrorSumSumRank = new List<double>();

            var dominatedObjectsCountSecondRandom = new List<double>();
            var dominatedObjectsCountSample = new List<double>();
            var dominatedObjectsCountBestRank = new List<double>();
            var dominatedObjectsCountSumRank = new List<double>();

            var dominatedObjectsOfBestObjectSecondRandom = new List<double>();
            var dominatedObjectsOfBestObjectSample = new List<double>();
            var dominatedObjectsOfBestObjectBestRank = new List<double>();
            var dominatedObjectsOfBestObjectSumRank = new List<double>();

            var subsetCount = 1;
            foreach (IEnumerable<CLRSafeHashSet<int>> subset in producedSubsets)
            {
                Console.WriteLine(strPreferenceSet + " (" + subsetCount + " / " +
                                  producedSubsets.Count + ")");

                sw.Restart();
                var subsetsProducer = new FixedSkylineSamplingSubsetsProducer(subset);
                var utility = new SkylineSamplingUtility(subsetsProducer);
                var skylineSample = new SkylineSampling(utility)
                {
                    SubsetCount = prefSqlModel.SkylineSampleCount,
                    SubsetDimension = prefSqlModel.SkylineSampleDimension,
                    SelectedStrategy = parser.SkylineType
                };

                DataTable sampleSkylineDataTable = skylineSample.GetSkylineTable(strQuery,
                    operators);

                sw.Stop();

                subsetObjects.Add(sampleSkylineDataTable.Rows.Count);
                subsetTime.Add(skylineSample.TimeMilliseconds);
                subsetTimeElapsed.Add(sw.ElapsedMilliseconds);

                IReadOnlyDictionary<long, object[]> sampleSkylineDatabase =
                    prefSQL.SQLSkyline.Helper.GetDatabaseAccessibleByUniqueId(
                        sampleSkylineDataTable, 0);
                IReadOnlyDictionary<long, object[]> sampleSkylineNormalized =
                    prefSQL.SQLSkyline.Helper.GetDatabaseAccessibleByUniqueId(
                        sampleSkylineDataTable, 0);
                SkylineSamplingHelper.NormalizeColumns(sampleSkylineNormalized,
                    skylineAttributeColumns);

                IReadOnlyDictionary<long, object[]> secondRandomSampleDatabase = new Dictionary<long, object[]>();
                IReadOnlyDictionary<long, object[]> secondRandomSampleNormalized = new Dictionary<long, object[]>();
                      IReadOnlyDictionary<long, object[]> entireSkylineDataTableBestRankDatabase = new Dictionary<long, object[]>();
                IReadOnlyDictionary<long, object[]> entireSkylineDataTableSumRankDatabase = new Dictionary<long, object[]>();
                IReadOnlyDictionary<long, object[]> entireSkylineDataTableBestRankNormalized = new Dictionary<long, object[]>();
                IReadOnlyDictionary<long, object[]> entireSkylineDataTableSumRankNormalized = new Dictionary<long, object[]>();

               if (ExcessiveTests)
                {
               secondRandomSampleDatabase =
                    SkylineSamplingHelper.GetRandomSample(entireSkylineDatabase,
                        sampleSkylineDataTable.Rows.Count);
                var secondRandomSampleNormalizedToBeCreated = new Dictionary<long, object[]>();
                foreach (KeyValuePair<long, object[]> k in secondRandomSampleDatabase)
                {
                    var newValue = new object[k.Value.Length];
                    k.Value.CopyTo(newValue, 0);
                    secondRandomSampleNormalizedToBeCreated.Add(k.Key, newValue);
                }
                secondRandomSampleNormalized =
                    new ReadOnlyDictionary<long, object[]>(
                        secondRandomSampleNormalizedToBeCreated);
                SkylineSamplingHelper.NormalizeColumns(secondRandomSampleNormalized,
                    skylineAttributeColumns);

                    entireSkylineDataTableBestRankNormalized =
                        GetEntireSkylineDataTableRankNormalized(entireSkylineDataTable.Copy(),
                            entireDataTableSkylineValues, skylineAttributeColumns,
                            sampleSkylineDataTable.Rows.Count, 1,
                            out entireSkylineDataTableBestRankDatabase);

                    entireSkylineDataTableSumRankNormalized =
                        GetEntireSkylineDataTableRankNormalized(entireSkylineDataTable.Copy(),
                            entireDataTableSkylineValues, skylineAttributeColumns,
                            sampleSkylineDataTable.Rows.Count, 2,
                            out entireSkylineDataTableSumRankDatabase);

                        IReadOnlyDictionary<long, object[]> baseRandomSampleNormalized =
                            SkylineSamplingHelper.GetRandomSample(entireSkylineNormalized,
                                sampleSkylineDataTable.Rows.Count);

                        double setCoverageCoveredBySecondRandomSample = SetCoverage.GetCoverage(
                                    baseRandomSampleNormalized,
                                    secondRandomSampleNormalized, skylineAttributeColumns) * 100.0;
                        double setCoverageCoveredBySkylineSample = SetCoverage.GetCoverage(
                                baseRandomSampleNormalized,
                                sampleSkylineNormalized, skylineAttributeColumns) * 100.0;
                        double setCoverageCoveredByEntireBestRank = SetCoverage.GetCoverage(
                                baseRandomSampleNormalized,
                                entireSkylineDataTableBestRankNormalized, skylineAttributeColumns) * 100.0;
                        double setCoverageCoveredByEntireSumRank = SetCoverage.GetCoverage(baseRandomSampleNormalized,
                                entireSkylineDataTableSumRankNormalized, skylineAttributeColumns) *
                                            100.0;

                    setCoverageSecondRandom.Add(setCoverageCoveredBySecondRandomSample);
                    setCoverageSample.Add(setCoverageCoveredBySkylineSample);
                    setCoverageBestRank.Add(setCoverageCoveredByEntireBestRank);
                    setCoverageSumRank.Add(setCoverageCoveredByEntireSumRank);

                    Dictionary<long, double>.ValueCollection baseRepresentationErrorSecondRandomSample = SetCoverage
                    .GetRepresentationError(
                        GetReducedSkyline(entireSkylineNormalized, secondRandomSampleNormalized),
                        secondRandomSampleNormalized, skylineAttributeColumns);
                    Dictionary<long, double>.ValueCollection baseRepresentationErrorSkylineSample = SetCoverage.GetRepresentationError(
                        GetReducedSkyline(entireSkylineNormalized, sampleSkylineNormalized),
                        sampleSkylineNormalized, skylineAttributeColumns);
                    Dictionary<long, double>.ValueCollection baseRepresentationErrorEntireBestRank =
                        SetCoverage.GetRepresentationError(
                            GetReducedSkyline(entireSkylineNormalized,
                                entireSkylineDataTableBestRankNormalized),
                            entireSkylineDataTableBestRankNormalized, skylineAttributeColumns);
                    Dictionary<long, double>.ValueCollection baseRepresentationErrorEntireSumRank =
                        SetCoverage.GetRepresentationError(
                            GetReducedSkyline(entireSkylineNormalized,
                                entireSkylineDataTableSumRankNormalized),
                            entireSkylineDataTableSumRankNormalized, skylineAttributeColumns);

                    representationErrorSecondRandom.Add(baseRepresentationErrorSecondRandomSample.Max()*100.0);
                    representationErrorSample.Add(baseRepresentationErrorSkylineSample.Max() * 100.0);
                    representationErrorBestRank.Add(baseRepresentationErrorEntireBestRank.Max() * 100.0);
                    representationErrorSumRank.Add(baseRepresentationErrorEntireSumRank.Max() * 100.0);

                    representationErrorSumSecondRandom.Add(baseRepresentationErrorSecondRandomSample.Sum() * 100.0);
                    representationErrorSumSample.Add(baseRepresentationErrorSkylineSample.Sum() * 100.0);
                    representationErrorSumBestRank.Add(baseRepresentationErrorEntireBestRank.Sum() * 100.0);
                    representationErrorSumSumRank.Add(baseRepresentationErrorEntireSumRank.Sum() * 100.0);

                    var dominatedObjectsCountRandomSample =
                        new DominatedObjects(entireDatabase,
                            secondRandomSampleDatabase,
                            skylineAttributeColumns);
                    var dominatedObjectsCountSampleSkyline =
                        new DominatedObjects(entireDatabase, sampleSkylineDatabase,
                            skylineAttributeColumns);
                    var dominatedObjectsCountEntireSkylineBestRank =
                        new DominatedObjects(entireDatabase,
                            entireSkylineDataTableBestRankDatabase, skylineAttributeColumns);
                    var dominatedObjectsCountEntireSkylineSumRank =
                        new DominatedObjects(entireDatabase,
                            entireSkylineDataTableSumRankDatabase, skylineAttributeColumns);

                    dominatedObjectsCountSecondRandom.Add(
                        dominatedObjectsCountRandomSample.NumberOfDistinctDominatedObjects);
                    dominatedObjectsCountSample.Add(
                        dominatedObjectsCountSampleSkyline.NumberOfDistinctDominatedObjects);
                    dominatedObjectsCountBestRank.Add(
                        dominatedObjectsCountEntireSkylineBestRank.NumberOfDistinctDominatedObjects);
                    dominatedObjectsCountSumRank.Add(
                        dominatedObjectsCountEntireSkylineSumRank.NumberOfDistinctDominatedObjects);

                    dominatedObjectsOfBestObjectSecondRandom.Add(
                        dominatedObjectsCountRandomSample
                            .NumberOfObjectsDominatedByEachObjectOrderedByDescCount.First().Value);
                    dominatedObjectsOfBestObjectSample.Add(
                        dominatedObjectsCountSampleSkyline
                            .NumberOfObjectsDominatedByEachObjectOrderedByDescCount.First().Value);
                    dominatedObjectsOfBestObjectBestRank.Add(
                        dominatedObjectsCountEntireSkylineBestRank
                            .NumberOfObjectsDominatedByEachObjectOrderedByDescCount.First().Value);
                    dominatedObjectsOfBestObjectSumRank.Add(
                        dominatedObjectsCountEntireSkylineSumRank
                            .NumberOfObjectsDominatedByEachObjectOrderedByDescCount.First().Value);

                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        sampleBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetBuckets(sampleSkylineNormalized,
                                skylineAttributeColumns);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedSampleBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(sampleBuckets);
                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        randomBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetBuckets(secondRandomSampleNormalized,
                                skylineAttributeColumns);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedRandomBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(randomBuckets);
                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        bestRankBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetBuckets(
                                entireSkylineDataTableBestRankNormalized,
                                skylineAttributeColumns);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedBestRankBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(
                                bestRankBuckets);
                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        sumRankBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetBuckets(
                                entireSkylineDataTableSumRankNormalized,
                                skylineAttributeColumns);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedSumRankBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(
                                sumRankBuckets);

                    FillTopBuckets(clusterAnalysisTopBuckets,
                        ClusterAnalysis.SampleSkyline, sampleBuckets,
                        sampleSkylineNormalized.Count, entireDatabaseNormalized.Count,
                        entireSkylineNormalized.Count);
                    FillTopBuckets(clusterAnalysisTopBuckets,
                        ClusterAnalysis.RandomSkyline, randomBuckets,
                        secondRandomSampleNormalized.Count, entireDatabaseNormalized.Count,
                        entireSkylineNormalized.Count);
                    FillTopBuckets(clusterAnalysisTopBuckets,
                        ClusterAnalysis.BestRank, bestRankBuckets,
                        entireSkylineDataTableBestRankNormalized.Count,
                        entireDatabaseNormalized.Count, entireSkylineNormalized.Count);
                    FillTopBuckets(clusterAnalysisTopBuckets,
                        ClusterAnalysis.SumRank, sumRankBuckets,
                        entireSkylineDataTableSumRankNormalized.Count,
                        entireDatabaseNormalized.Count, entireSkylineNormalized.Count);

                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        sampleMedianBuckets =
                            clusterAnalysisForMedian.GetBuckets(sampleSkylineNormalized,
                                skylineAttributeColumns, true);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedSampleMedianBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(sampleMedianBuckets);
                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        randomMedianBuckets =
                            clusterAnalysisForMedian.GetBuckets(secondRandomSampleNormalized,
                                skylineAttributeColumns, true);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedRandomMedianBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(randomMedianBuckets);
                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        bestRankMedianBuckets =
                            clusterAnalysisForMedian.GetBuckets(
                                entireSkylineDataTableBestRankNormalized,
                                skylineAttributeColumns, true);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedBestRankMedianBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(
                                bestRankMedianBuckets);
                    IReadOnlyDictionary<BigInteger, List<IReadOnlyDictionary<long, object[]>>>
                        sumRankMedianBuckets =
                            clusterAnalysisForMedian.GetBuckets(
                                entireSkylineDataTableSumRankNormalized,
                                skylineAttributeColumns, true);
                    IReadOnlyDictionary<int, List<IReadOnlyDictionary<long, object[]>>>
                        aggregatedSumRankMedianBuckets =
                            prefSQL.Evaluation.ClusterAnalysis.GetAggregatedBuckets(
                                sumRankMedianBuckets);

                    FillTopBuckets(clusterAnalysisMedianTopBuckets,
                        ClusterAnalysis.SampleSkyline, sampleMedianBuckets,
                        sampleSkylineNormalized.Count, entireDatabaseNormalized.Count,
                        entireSkylineNormalized.Count);
                    FillTopBuckets(clusterAnalysisMedianTopBuckets,
                        ClusterAnalysis.RandomSkyline, randomMedianBuckets,
                        secondRandomSampleNormalized.Count, entireDatabaseNormalized.Count,
                        entireSkylineNormalized.Count);
                    FillTopBuckets(clusterAnalysisMedianTopBuckets,
                        ClusterAnalysis.BestRank, bestRankMedianBuckets,
                        entireSkylineDataTableBestRankNormalized.Count,
                        entireDatabaseNormalized.Count, entireSkylineNormalized.Count);
                    FillTopBuckets(clusterAnalysisMedianTopBuckets,
                        ClusterAnalysis.SumRank, sumRankMedianBuckets,
                        entireSkylineDataTableSumRankNormalized.Count,
                        entireDatabaseNormalized.Count, entireSkylineNormalized.Count);

                    var caEntireDbNew = new List<double>();
                    var caEntireSkylineNew = new List<double>();
                    var caSampleSkylineNew = new List<double>();
                    var caRandomSkylineNew = new List<double>();
                    var caBestRankNew = new List<double>();
                    var caSumRankNew = new List<double>();

                    for (var ii = 0; ii < skylineAttributeColumns.Length; ii++)
                    {
                        int entireSkyline = aggregatedEntireSkylineBuckets.ContainsKey(ii)
                            ? aggregatedEntireSkylineBuckets[ii].Count
                            : 0;
                        int sampleSkyline = aggregatedSampleBuckets.ContainsKey(ii)
                            ? aggregatedSampleBuckets[ii].Count
                            : 0;
                        int randomSkyline = aggregatedRandomBuckets.ContainsKey(ii)
                            ? aggregatedRandomBuckets[ii].Count
                            : 0;
                        double entireSkylinePercent = (double)entireSkyline /
                                                      entireSkylineNormalized.Count;
                        double sampleSkylinePercent = (double) sampleSkyline /
                                                      sampleSkylineNormalized.Count;
                        double randomSkylinePercent = (double)randomSkyline /
                                                      secondRandomSampleNormalized.Count;
                        int entireDb = aggregatedEntireDatabaseBuckets.ContainsKey(ii)
                            ? aggregatedEntireDatabaseBuckets[ii].Count
                            : 0;
                        double entireDbPercent = (double) entireDb /
                                                 entireDatabaseNormalized.Count;

                        int bestRank = aggregatedBestRankBuckets.ContainsKey(ii)
                            ? aggregatedBestRankBuckets[ii].Count
                            : 0;
                        int sumRank = aggregatedSumRankBuckets.ContainsKey(ii)
                            ? aggregatedSumRankBuckets[ii].Count
                            : 0;

                        double bestRankPercent = (double) bestRank /
                                                 entireSkylineDataTableBestRankNormalized.Count;
                        double sumRankPercent = (double) sumRank /
                                                entireSkylineDataTableSumRankNormalized.Count;
                        caEntireDbNew.Add(entireDbPercent);
                        caEntireSkylineNew.Add(entireSkylinePercent);
                        caSampleSkylineNew.Add(sampleSkylinePercent);
                        caRandomSkylineNew.Add(randomSkylinePercent);
                        caBestRankNew.Add(bestRankPercent);
                        caSumRankNew.Add(sumRankPercent);
                    }

                    var caMedianEntireDbNew = new List<double>();
                    var caMedianEntireSkylineNew = new List<double>();
                    var caMedianSampleSkylineNew = new List<double>();
                    var caMedianRandomSkylineNew = new List<double>();
                    var caMedianBestRankNew = new List<double>();
                    var caMedianSumRankNew = new List<double>();

                    for (var ii = 0; ii < skylineAttributeColumns.Length; ii++)
                    {
                        int entireSkyline = aggregatedEntireSkylineMedianBuckets.ContainsKey(ii)
                            ? aggregatedEntireSkylineMedianBuckets[ii].Count
                            : 0;
                        int sampleSkyline = aggregatedSampleMedianBuckets.ContainsKey(ii)
                            ? aggregatedSampleMedianBuckets[ii].Count
                            : 0;
                        int randomSkyline = aggregatedRandomMedianBuckets.ContainsKey(ii)
                            ? aggregatedRandomMedianBuckets[ii].Count
                            : 0;
                        double entireSkylinePercent = (double)entireSkyline /
                                                      entireSkylineNormalized.Count;
                        double sampleSkylinePercent = (double) sampleSkyline /
                                                      sampleSkylineNormalized.Count;
                        double randomSkylinePercent = (double)randomSkyline /
                                                      secondRandomSampleNormalized.Count;
                        int entireDb = aggregatedEntireDatabaseMedianBuckets.ContainsKey(ii)
                            ? aggregatedEntireDatabaseMedianBuckets[ii].Count
                            : 0;
                        double entireDbPercent = (double) entireDb /
                                                 entireDatabaseNormalized.Count;

                        int bestRank = aggregatedBestRankMedianBuckets.ContainsKey(ii)
                            ? aggregatedBestRankMedianBuckets[ii].Count
                            : 0;
                        int sumRank = aggregatedSumRankMedianBuckets.ContainsKey(ii)
                            ? aggregatedSumRankMedianBuckets[ii].Count
                            : 0;

                        double bestRankPercent = (double) bestRank /
                                                 entireSkylineDataTableBestRankNormalized.Count;
                        double sumRankPercent = (double) sumRank /
                                                entireSkylineDataTableSumRankNormalized.Count;
                        caMedianEntireDbNew.Add(entireDbPercent);
                        caMedianEntireSkylineNew.Add(entireSkylinePercent);
                        caMedianSampleSkylineNew.Add(sampleSkylinePercent);
                        caMedianRandomSkylineNew.Add(randomSkylinePercent);
                        caMedianBestRankNew.Add(bestRankPercent);
                        caMedianSumRankNew.Add(sumRankPercent);
                    }

                clusterAnalysis[ClusterAnalysis.EntireDb].Add(caEntireDbNew);
                clusterAnalysis[ClusterAnalysis.EntireSkyline].Add(
                    caEntireSkylineNew);
                clusterAnalysis[ClusterAnalysis.SampleSkyline].Add(
                    caSampleSkylineNew);
                clusterAnalysis[ClusterAnalysis.RandomSkyline].Add(
                    caRandomSkylineNew);
                clusterAnalysis[ClusterAnalysis.BestRank].Add(
                    caBestRankNew);
                clusterAnalysis[ClusterAnalysis.SumRank].Add(
                    caSumRankNew);

                clusterAnalysisMedian[ClusterAnalysis.EntireDb].Add(
                    caMedianEntireDbNew);
                clusterAnalysisMedian[ClusterAnalysis.EntireSkyline].Add(
                    caMedianEntireSkylineNew);
                clusterAnalysisMedian[ClusterAnalysis.SampleSkyline].Add(
                    caMedianSampleSkylineNew);
                clusterAnalysisMedian[ClusterAnalysis.RandomSkyline].Add(
                    caMedianRandomSkylineNew);
                clusterAnalysisMedian[ClusterAnalysis.BestRank].Add(
                    caMedianBestRankNew);
                clusterAnalysisMedian[ClusterAnalysis.SumRank].Add(
                    caMedianSumRankNew);
                }

                subsetCount++;
            }

            Dictionary<ClusterAnalysis, string> clusterAnalysisStrings =
                GetClusterAnalysisStrings(skylineAttributeColumns, clusterAnalysis);
            Dictionary<ClusterAnalysis, string> clusterAnalysisMedianStrings =
                GetClusterAnalysisStrings(skylineAttributeColumns, clusterAnalysisMedian);
            Dictionary<ClusterAnalysis, string> clusterAnalysisTopBucketsStrings =
                GetClusterAnalysisTopBucketsStrings(clusterAnalysisTopBuckets, ExcessiveTests);
            Dictionary<ClusterAnalysis, string> clusterAnalysisMedianTopBucketsStrings =
                GetClusterAnalysisTopBucketsStrings(clusterAnalysisMedianTopBuckets, ExcessiveTests);

            var time = (long) (subsetTime.Average() + .5);
            var objects = (long) (subsetObjects.Average() + .5);
            var elapsed = (long) (subsetTimeElapsed.Average() + .5);

            Console.WriteLine("subsetTime");
            foreach (var i in subsetTime)
            {
                Console.WriteLine(i);
            }
            Console.WriteLine("");

            Console.WriteLine("subsetObjects");
            foreach (var i in subsetObjects)
            {
                Console.WriteLine(i);
            }
            Console.WriteLine("");

            reportDimensions.Add(preferences.Count);
            reportSkylineSize.Add(objects);
            reportTimeTotal.Add(elapsed);
            reportTimeAlgorithm.Add(time);
            reportMinCorrelation.Add(minCorrelation);
            reportMaxCorrelation.Add(maxCorrelation);
            reportCardinality.Add(cardinality);

            var setCoverageSingle =
                new Dictionary<SkylineTypesSingle, List<double>>
                {
                    {SkylineTypesSingle.Random, setCoverageSecondRandom},
                    {SkylineTypesSingle.Sample, setCoverageSample},
                    {SkylineTypesSingle.BestRank, setCoverageBestRank},
                    {SkylineTypesSingle.SumRank, setCoverageSumRank}
                };

            var representationErrorSingle =
                new Dictionary<SkylineTypesSingle, List<double>>
                {
                    {SkylineTypesSingle.Random, representationErrorSecondRandom},
                    {SkylineTypesSingle.Sample, representationErrorSample},
                    {SkylineTypesSingle.BestRank, representationErrorBestRank},
                    {SkylineTypesSingle.SumRank, representationErrorSumRank}
                };

            var representationErrorSumSingle =
                new Dictionary<SkylineTypesSingle, List<double>>
                {
                    {SkylineTypesSingle.Random, representationErrorSumSecondRandom},
                    {SkylineTypesSingle.Sample, representationErrorSumSample},
                    {SkylineTypesSingle.BestRank, representationErrorSumBestRank},
                    {SkylineTypesSingle.SumRank, representationErrorSumSumRank}
                };

            var dominatedObjectsCountSingle =
                new Dictionary<SkylineTypesSingle, List<double>>()
                {
                    {
                        SkylineTypesSingle.Random,
                        dominatedObjectsCountSecondRandom
                    },
                    {
                        SkylineTypesSingle.Sample,
                        dominatedObjectsCountSample
                    },
                    {
                        SkylineTypesSingle.BestRank,
                        dominatedObjectsCountBestRank
                    },
                    {
                        SkylineTypesSingle.SumRank,
                        dominatedObjectsCountSumRank
                    }
                };

            var dominatedObjectsOfBestObjectSingle =
                new Dictionary<SkylineTypesSingle, List<double>>
                {
                    {
                        SkylineTypesSingle.Random,
                        dominatedObjectsOfBestObjectSecondRandom
                    },
                    {
                        SkylineTypesSingle.Sample,
                        dominatedObjectsOfBestObjectSample
                    },
                    {
                        SkylineTypesSingle.BestRank,
                        dominatedObjectsOfBestObjectBestRank
                    },
                    {
                        SkylineTypesSingle.SumRank,
                        dominatedObjectsOfBestObjectSumRank
                    }
                };

            AddToReports(_reportsLong, subsetObjects, subsetTime,
                _reportsDouble);
            if (ExcessiveTests)
            {
            AddToSetCoverage(_setCoverage, setCoverageSingle);
            AddToSetCoverage(_representationError,
                representationErrorSingle);
            AddToSetCoverage(_representationErrorSum,
                representationErrorSumSingle);
            AddToSetCoverage(_dominatedObjectsCount,
                dominatedObjectsCountSingle);
            AddToSetCoverage(_dominatedObjectsOfBestObject,
                dominatedObjectsOfBestObjectSingle);
            }

            string strLine = FormatLineString(strPreferenceSet, strTrial,
                preferences.Count, objects,
                elapsed, time, subsetTime.Min(), subsetTime.Max(),
                MyMathematic.GetSampleVariance(subsetTime),
                MyMathematic.GetSampleStdDeviation(subsetTime),
                Mathematic.Median(subsetTime), Mathematic.LowerQuartile(subsetTime),
                Mathematic.UpperQuartile(subsetTime), subsetObjects.Min(),
                subsetObjects.Max(), MyMathematic.GetSampleVariance(subsetObjects),
                MyMathematic.GetSampleStdDeviation(subsetObjects),
                Mathematic.Median(subsetObjects), Mathematic.LowerQuartile(subsetObjects),
                Mathematic.UpperQuartile(subsetObjects),
                setCoverageSingle, representationErrorSingle,
                representationErrorSumSingle, dominatedObjectsCountSingle,
                dominatedObjectsOfBestObjectSingle,
                clusterAnalysisStrings, clusterAnalysisMedianStrings,
                clusterAnalysisTopBucketsStrings, clusterAnalysisMedianTopBucketsStrings,
                minCorrelation, maxCorrelation,
                cardinality, numberOfMoves, numberOfComparisons);
            return strLine;
        }