Ejemplo n.º 1
0
        // Compute the inverse of the banded matrix.  The return value is
        // 'true' when the matrix is invertible, in which case the 'inverse'
        // output is valid.  The return value is 'false' when the matrix is
        // not invertible, in which case 'inverse' is invalid and should not
        // be used.  The input matrix 'inverse' must be the same size as
        // 'this'.
        //
        // 'bMatrix' must have the storage order specified by the template
        // parameter.
        public bool ComputeInverse(double[] inverse)
        {
            LexicoArray2 invA = new LexicoArray2(this.size, this.size, inverse);

            BandedMatrix tmpA = this;

            for (int row = 0; row < this.size; row++)
            {
                for (int col = 0; col < this.size; col++)
                {
                    if (row != col)
                    {
                        invA[row, col] = 0.0;
                    }
                    else
                    {
                        invA[row, row] = 1.0;
                    }
                }
            }

            // Forward elimination.
            for (int row = 0; row < this.size; row++)
            {
                // The pivot must be nonzero in order to proceed.
                double diag = tmpA[row, row];
                if (Math.Abs(diag) < double.Epsilon)
                {
                    return(false);
                }

                double invDiag = 1.0 / diag;
                tmpA[row, row] = 1.0;

                // Multiply the row to be consistent with diagonal term of 1.
                int colMin = row + 1;
                int colMax = colMin + this.uBands.Length;
                if (colMax > this.size)
                {
                    colMax = this.size;
                }

                int c;
                for (c = colMin; c < colMax; c++)
                {
                    tmpA[row, c] *= invDiag;
                }
                for (c = 0; c <= row; c++)
                {
                    invA[row, c] *= invDiag;
                }

                // Reduce the remaining rows.
                int rowMin = row + 1;
                int rowMax = rowMin + this.lBands.Length;
                if (rowMax > this.size)
                {
                    rowMax = this.size;
                }

                for (int r = rowMin; r < rowMax; r++)
                {
                    double mult = tmpA[r, row];
                    tmpA[r, row] = 0.0;
                    for (c = colMin; c < colMax; c++)
                    {
                        tmpA[r, c] -= mult * tmpA[row, c];
                    }
                    for (c = 0; c <= row; c++)
                    {
                        invA[r, c] -= mult * invA[row, c];
                    }
                }
            }

            // Backward elimination.
            for (int row = this.size - 1; row >= 1; row--)
            {
                int rowMax = row - 1;
                int rowMin = row - this.uBands.Length;
                if (rowMin < 0)
                {
                    rowMin = 0;
                }

                for (int r = rowMax; r >= rowMin; r--)
                {
                    double mult = tmpA[r, row];
                    tmpA[r, row] = 0.0;
                    for (int c = 0; c < this.size; c++)
                    {
                        invA[r, c] -= mult * invA[row, c];
                    }
                }
            }

            return(true);
        }
Ejemplo n.º 2
0
        // Construction.  The preconditions for calling the constructor are
        // 1 <= degree && degree < numControls <= numSamples - degree - 1.
        // The samples points are contiguous blocks of 'dimension' double values
        // stored in sampleData.
        public BSplineCurveFit(Vector3[] sampleData, int degree, int numControls)
        {
            this.numSamples  = sampleData.Length;
            this.sampleData  = sampleData;
            this.degree      = degree;
            this.numControls = numControls;
            this.controlData = new Vector3[numControls];

            Debug.Assert(1 <= degree && degree < numControls, "Invalid degree.");
            Debug.Assert(sampleData != null, "Invalid sample data.");
            Debug.Assert(numControls <= this.numSamples - degree - 1, "Invalid number of controls.");

            BasisFunctionInput input = new BasisFunctionInput();

            input.NumControls                 = numControls;
            input.Degree                      = degree;
            input.Uniform                     = true;
            input.Periodic                    = false;
            input.NumUniqueKnots              = numControls - degree + 1;
            input.UniqueKnots                 = new UniqueKnot[input.NumUniqueKnots];
            input.UniqueKnots[0].T            = 0.0;
            input.UniqueKnots[0].Multiplicity = degree + 1;

            int    last   = input.NumUniqueKnots - 1;
            double factor = 1.0 / last;

            for (int i = 1; i < last; ++i)
            {
                input.UniqueKnots[i].T            = factor * i;
                input.UniqueKnots[i].Multiplicity = 1;
            }
            input.UniqueKnots[last].T            = 1.0;
            input.UniqueKnots[last].Multiplicity = degree + 1;
            this.basisFunction = new BasisFunction(input);

            // Fit the data points with a B-spline curve using a least-squares
            // error metric.  The problem is of the form A^T*A*Q = A^T*P,
            // where A^T*A is a banded matrix, P contains the sample data, and
            // Q is the unknown vector of control points.
            double tMultiplier = 1.0 / (this.numSamples - 1.0);
            double t;
            int    i0, i1, i2, imin, imax;

            // Construct the matrix A^T*A.
            int          degp1    = this.degree + 1;
            int          numBands = this.numControls > degp1 ? degp1 : this.degree;
            BandedMatrix ATAMat   = new BandedMatrix(this.numControls, numBands, numBands);

            for (i0 = 0; i0 < this.numControls; i0++)
            {
                for (i1 = 0; i1 < i0; i1++)
                {
                    ATAMat[i0, i1] = ATAMat[i1, i0];
                }

                int i1Max = i0 + this.degree;
                if (i1Max >= this.numControls)
                {
                    i1Max = this.numControls - 1;
                }

                for (i1 = i0; i1 <= i1Max; i1++)
                {
                    double value = 0.0;
                    for (i2 = 0; i2 < this.numSamples; i2++)
                    {
                        t = tMultiplier * i2;
                        this.basisFunction.Evaluate(t, 0, out imin, out imax);
                        if (imin <= i0 && i0 <= imax && imin <= i1 && i1 <= imax)
                        {
                            double b0 = this.basisFunction.GetValue(0, i0);
                            double b1 = this.basisFunction.GetValue(0, i1);
                            value += b0 * b1;
                        }
                    }
                    ATAMat[i0, i1] = value;
                }
            }

            // Construct the matrix A^T.
            double[] ATMat = new double[this.numControls * this.numSamples];

            for (i0 = 0; i0 < this.numControls; i0++)
            {
                for (i1 = 0; i1 < this.numSamples; i1++)
                {
                    t = tMultiplier * i1;
                    this.basisFunction.Evaluate(t, 0, out imin, out imax);
                    if (imin <= i0 && i0 <= imax)
                    {
                        ATMat[i0 * this.numSamples + i1] = this.basisFunction.GetValue(0, i0);
                    }
                }
            }

            // Compute X0 = (A^T*A)^{-1}*A^T by solving the linear system
            // A^T*A*X = A^T.
            bool solved = ATAMat.SolveSystem(ref ATMat, this.numSamples);

            Debug.Assert(solved, "Failed to solve linear system.");

            // The control points for the fitted curve are stored in the
            // vector Q = X0*P, where P is the vector of sample data.
            for (i0 = 0; i0 < this.numControls; i0++)
            {
                Vector3 Q = this.controlData[i0];
                for (i1 = 0; i1 < this.numSamples; i1++)
                {
                    Vector3 P      = this.sampleData[i1];
                    double  xValue = ATMat[i0 * this.numSamples + i1];
                    Q += xValue * P;
                }

                this.controlData[i0] = Q;
            }

            // TRANSLATION NOTE
            // In the original code the first and last controls are set to the same position of the sample data
            // but the purpose of fitting a curve that averages the points of the sample data I do not expect that
            // the first and last controls are exactly int the same positions as the first and last points of the sample data
            // A similar situation we have with the BSplineReduction class but vice versa.
            // The original code do not set the first and last points to be the same as the original control points,
            // but in this case I expect them to be the same.
            // END

            // Set the first and last output control points to match the first
            // and last input samples.  This supports the application of
            // fitting keyframe data with B-spline curves.  The user expects
            // that the curve passes through the first and last positions in
            // order to support matching two consecutive keyframe sequences.
            //this.controlData[0] = this.sampleData[0];
            //this.controlData[this.controlData.Length - 1] = this.sampleData[this.sampleData.Length - 1];
        }
Ejemplo n.º 3
0
        public BSplineReduction(Vector3[] inControls, int degree, double fraction)
            : this()
        {
            int numSamples = inControls.Length;

            this.sampleData = inControls;
            Debug.Assert(numSamples >= 2 && 1 <= degree && degree < numSamples, "Invalid input.");

            // Clamp the number of control points to [degree+1,quantity-1].
            int numControls = (int)Math.Round(fraction * numSamples);

            if (numControls >= numSamples)
            {
                this.controlData = inControls;
                return;
            }

            if (numControls < degree + 1)
            {
                numControls = degree + 1;
            }

            // Set up basis function parameters.  Function 0 corresponds to
            // the output curve.  Function 1 corresponds to the input curve.
            this.degree      = degree;
            this.quantity[0] = numControls;
            this.quantity[1] = numSamples;

            for (int j = 0; j <= 1; j++)
            {
                this.numKnots[j] = this.quantity[j] + this.degree + 1;
                this.knot[j]     = new double[this.numKnots[j]];

                int i;
                for (i = 0; i <= this.degree; ++i)
                {
                    this.knot[j][i] = 0.0;
                }

                double denom  = this.quantity[j] - this.degree;
                double factor = 1.0 / denom;
                for (/**/; i < this.quantity[j]; ++i)
                {
                    this.knot[j][i] = (i - this.degree) * factor;
                }

                for (/**/; i < this.numKnots[j]; ++i)
                {
                    this.knot[j][i] = 1.0;
                }
            }

            // Construct matrix A (depends only on the output basis function).
            double value, tmin, tmax;
            int    i0, i1;

            this.mBasis[0] = 0;
            this.mBasis[1] = 0;

            double integrand(double t)
            {
                double value0 = this.F(this.mBasis[0], this.mIndex[0], this.degree, t);
                double value1 = this.F(this.mBasis[1], this.mIndex[1], this.degree, t);
                double result = value0 * value1;

                return(result);
            }

            BandedMatrix A = new BandedMatrix(this.quantity[0], this.degree, this.degree);

            for (i0 = 0; i0 < this.quantity[0]; ++i0)
            {
                this.mIndex[0] = i0;
                tmax           = this.MaxSupport(0, i0);

                for (i1 = i0; i1 <= i0 + this.degree && i1 < this.quantity[0]; ++i1)
                {
                    this.mIndex[1] = i1;
                    tmin           = this.MinSupport(0, i1);

                    value     = Integration.Romberg(8, tmin, tmax, integrand);
                    A[i0, i1] = value;
                    A[i1, i0] = value;
                }
            }

            // Construct A^{-1}.
            // scheme to invert A?
            GMatrix invA       = new GMatrix(this.quantity[0], this.quantity[0]);
            bool    invertible = A.ComputeInverse(invA.Elements.Vector);

            Debug.Assert(invertible, "Failed to invert matrix.");

            // Construct B (depends on both input and output basis functions).
            this.mBasis[1] = 1;
            GMatrix B = new GMatrix(this.quantity[0], this.quantity[1]);

            for (i0 = 0; i0 < this.quantity[0]; ++i0)
            {
                this.mIndex[0] = i0;
                double tmin0 = this.MinSupport(0, i0);
                double tmax0 = this.MaxSupport(0, i0);

                for (i1 = 0; i1 < this.quantity[1]; ++i1)
                {
                    this.mIndex[1] = i1;
                    double tmin1 = this.MinSupport(1, i1);
                    double tmax1 = this.MaxSupport(1, i1);

                    double[]         interval0 = { tmin0, tmax0 };
                    double[]         interval1 = { tmin1, tmax1 };
                    FIQueryIntervals result    = new FIQueryIntervals(interval0, interval1);
                    if (result.NumIntersections == 2)
                    {
                        value = Integration.Romberg(8, result.Overlap[0], result.Overlap[1], integrand);

                        B[i0, i1] = value;
                    }
                    else
                    {
                        B[i0, i1] = 0.0;
                    }
                }
            }

            // Construct A^{-1}*B.
            GMatrix prod = invA * B;

            // Allocate output control points.
            // Construct the control points for the least-squares curve.
            this.controlData = new Vector3[numControls];
            for (i0 = 0; i0 < this.quantity[0]; ++i0)
            {
                for (i1 = 0; i1 < this.quantity[1]; ++i1)
                {
                    this.controlData[i0] += inControls[i1] * prod[i0, i1];
                }
            }

            // TRANSLATION NOTE
            // In the original code the first and last controls are not set to the same position of the sample data
            // but when reducing the control points of a curve I expect that
            // the first and last controls are exactly int the same positions as the first and last controls of the original curve
            // A similar situation we have with the BSplineFit class but vice versa.
            // The original code sets the first and last points to be the same as the original control points,
            // but in this case I do not expect them to be the same.
            // END

            // Set the first and last output control points to match the first
            // and last input samples.  This supports the application of
            // reducing keyframe data with B-spline curves.  The user expects
            // that the curve passes through the first and last positions in
            // order to support matching two consecutive keyframe sequences.
            this.controlData[0] = inControls[0];
            this.controlData[this.controlData.Length - 1] = inControls[inControls.Length - 1];

            BasisFunctionInput input = new BasisFunctionInput(numControls, degree);

            this.basisFunction = new BasisFunction(input);
        }