public static Vector Cross(Normal v1, Vector v2)
 {
     if (v1.HasNaNs() || v2.HasNaNs()) throw new InvalidOperationException();
     double v1x = v1.x, v1y = v1.y, v1z = v1.z;
     double v2x = v2.x, v2y = v2.y, v2z = v2.z;
     return new Vector((v1y * v2z) - (v1z * v2y),
                   (v1z * v2x) - (v1x * v2z),
                   (v1x * v2y) - (v1y * v2x));
 }
        public DifferentialGeometry(Point P, Vector DPDU, Vector DPDV, Normal DNDU, Normal DNDV, double uu, double vv, Shape sh)
        {
            p = P; dpdu = DPDU; dpdv = DPDV; dndu = DNDU; dndv = DNDV;
            // Initialize _DifferentialGeometry_ from parameters
            nn = new Normal(Geometry.Normalize(Geometry.Cross(dpdu, dpdv)));
            u = uu;
            v = vv;
            shape = sh;
            dudx = dvdx = dudy = dvdy = 0.0d;

            // Adjust normal based on orientation and handedness
            if (shape != null && (shape.ReverseOrientation ^ shape.TransformSwapsHandedness)) nn *= -1.0d;
        }
Ejemplo n.º 3
0
        public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg)
        {
            tHit = Double.NaN;
            rayEpsilon = Double.NaN;
            dg = null;

            // Transform _Ray_ to object space
            Ray ray = WorldToObject.Apply(r);

            // Compute plane intersection for disk
            if (Math.Abs(ray.d.z) < 1e-7) return false;
            double thit = (height - ray.o.z) / ray.d.z;
            if (thit < ray.mint || thit > ray.maxt)
                return false;

            // See if hit point is inside disk radii and $\phimax$
            Point phit = ray.GetPointAt(thit);
            double dist2 = phit.x * phit.x + phit.y * phit.y;
            if (dist2 > radius * radius || dist2 < innerRadius * innerRadius)
                return false;

            // Test disk $\phi$ value against $\phimax$
            double phi = Math.Atan2(phit.y, phit.x);
            if (phi < 0) phi += 2.0d * Math.PI;
            if (phi > phiMax)
                return false;

            // Find parametric representation of disk hit
            double u = phi / phiMax;
            double oneMinusV = ((Math.Sqrt(dist2) - innerRadius) / (radius - innerRadius));
            double invOneMinusV = (oneMinusV > 0.0d) ? (1.0d / oneMinusV) : 0.0d;
            double v = 1.0d - oneMinusV;
            Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0.0d);
            Vector dpdv = new Vector(-phit.x * invOneMinusV, -phit.y * invOneMinusV, 0.0d);
            dpdu *= phiMax * Constants.INV_TWOPI;
            dpdv *= (radius - innerRadius) / radius;
            Normal dndu = new Normal(0, 0, 0);
            Normal dndv = new Normal(0, 0, 0);

            // Initialize _DifferentialGeometry_ from parametric information
            Transform o2w = ObjectToWorld;
            dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this);

            // Update _tHit_ for quadric intersection
            tHit = thit;

            // Compute _rayEpsilon_ for quadric intersection
            rayEpsilon = 5e-4d * tHit;
            return true;
        }
 public TriangleMesh(Transform o2w, Transform w2o, bool ro, int nt, int nv, int[] vi, Point[] P, Normal[] N, Vector[] S, double[] uv, Texture<double> atex)
     : base(o2w, w2o, ro)
 {
     alphaTexture = atex;
     ntris = nt;
     nverts = nv;
     vertexIndex = new int[ntris * 3];
     Array.Copy(vi, 0, vertexIndex, 0, ntris * 3);
     // Copy _uv_, _N_, and _S_ vertex data, if present
     if (uv != null)
     {
         uvs = new double[2 * nverts];
         Array.Copy(uv, 0, uvs, 0, 2 * nverts);
     }
     else
     {
         uvs = null;
     }
     p = new Point[nverts];
     if (N != null)
     {
         n = new Normal[nverts];
         Array.Copy(N, 0, n, 0, nverts);
     }
     else
     {
         n = null;
     }
     if (S != null)
     {
         s = new Vector[nverts];
         Array.Copy(S, 0, s, 0, nverts);
     }
     else
     {
         s = null;
     }
     // Transform mesh vertices to world space
     for (int i = 0; i < nverts; ++i)
     {
         p[i] = ObjectToWorld.Apply(P[i]);
     }
 }
 public Normal Apply(Normal n)
 {
     double x = n.x, y = n.y, z = n.z;
     return new Normal(mInv.m[0, 0] * x + mInv.m[1, 0] * y + mInv.m[2, 0] * z,
                   mInv.m[0, 1] * x + mInv.m[1, 1] * y + mInv.m[2, 1] * z,
                   mInv.m[0, 2] * x + mInv.m[1, 2] * y + mInv.m[2, 2] * z);
 }
Ejemplo n.º 6
0
 public virtual Point Sample(Point p, double u1, double u2, ref Normal ns)
 {
     return Sample(u1, u2, ref ns);
 }
Ejemplo n.º 7
0
 public virtual Point Sample(double u1, double u2, ref Normal ns)
 {
     throw new NotImplementedException();
 }
        public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out  DifferentialGeometry dg)
        {
            double phi;
            Point phit;

            tHit = Double.NaN;
            rayEpsilon = Double.NaN;
            dg = null;

            // Transform _Ray_ to object space
            Ray ray = WorldToObject.Apply(r);

            // Compute quadratic sphere coefficients
            double A = ray.d.x * ray.d.x + ray.d.y * ray.d.y + ray.d.z * ray.d.z;
            double B = 2 * (ray.d.x * ray.o.x + ray.d.y * ray.o.y + ray.d.z * ray.o.z);
            double C = ray.o.x * ray.o.x + ray.o.y * ray.o.y + ray.o.z * ray.o.z - radius * radius;

            // Solve quadratic equation for _t_ values
            double t0, t1;
            if (!Utility.Quadratic(A, B, C, out t0, out t1))
                return false;

            // Compute intersection distance along ray
            if (t0 > ray.maxt || t1 < ray.mint)
                return false;

            double thit = t0;
            if (t0 < ray.mint)
            {
                thit = t1;
                if (thit > ray.maxt) return false;
            }

            // Compute sphere hit position and $\phi$
            phit = ray.GetPointAt(thit);
            if (phit.x == 0.0d && phit.y == 0.0d) phit.x = 1e-5d * radius;
            phi = Math.Atan2(phit.y, phit.x);
            if (phi < 0.0d) phi += 2.0d * Math.PI;

            // Test sphere intersection against clipping parameters
            if ((zmin > -radius && phit.z < zmin) ||
                (zmax < radius && phit.z > zmax) || phi > phiMax)
            {
                if (thit == t1) return false;
                if (t1 > ray.maxt) return false;
                thit = t1;
                // Compute sphere hit position and $\phi$
                phit = ray.GetPointAt(thit);
                if (phit.x == 0.0d && phit.y == 0.0d) phit.x = 1e-5d * radius;
                phi = Math.Atan2(phit.y, phit.x);
                if (phi < 0.0d) phi += 2.0d * Math.PI;
                if ((zmin > -radius && phit.z < zmin) ||
                    (zmax < radius && phit.z > zmax) || phi > phiMax)
                    return false;
            }

            // Find parametric representation of sphere hit
            double u = phi / phiMax;
            double theta = Math.Acos(Utility.Clamp(phit.z / radius, -1.0d, 1.0d));
            double v = (theta - thetaMin) / (thetaMax - thetaMin);

            // Compute sphere $\dpdu$ and $\dpdv$
            double zradius = Math.Sqrt(phit.x * phit.x + phit.y * phit.y);
            double invzradius = 1.0d / zradius;
            double cosphi = phit.x * invzradius;
            double sinphi = phit.y * invzradius;
            Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0);
            Vector dpdv = (thetaMax - thetaMin) * new Vector(phit.z * cosphi, phit.z * sinphi, -radius * Math.Sin(theta));

            // Compute sphere $\dndu$ and $\dndv$
            Vector d2Pduu = -phiMax * phiMax * new Vector(phit.x, phit.y, 0);
            Vector d2Pduv = (thetaMax - thetaMin) * phit.z * phiMax * new Vector(-sinphi, cosphi, 0.0d);
            Vector d2Pdvv = -(thetaMax - thetaMin) * (thetaMax - thetaMin) * new Vector(phit.x, phit.y, phit.z);

            // Compute coefficients for fundamental forms
            double E = Geometry.Dot(dpdu, dpdu);
            double F = Geometry.Dot(dpdu, dpdv);
            double G = Geometry.Dot(dpdv, dpdv);
            Vector N = Geometry.Normalize(Geometry.Cross(dpdu, dpdv));
            double e = Geometry.Dot(N, d2Pduu);
            double f = Geometry.Dot(N, d2Pduv);
            double g = Geometry.Dot(N, d2Pdvv);

            // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
            double invEGF2 = 1.0d / (E * G - F * F);
            Normal dndu = new Normal((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv);
            Normal dndv = new Normal((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv);

            // Initialize _DifferentialGeometry_ from parametric information
            Transform o2w = ObjectToWorld;
            dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv),
                                       o2w.Apply(dndu), o2w.Apply(dndv), u, v, this);

            // Update _tHit_ for quadric intersection
            tHit = thit;

            // Compute _rayEpsilon_ for quadric intersection
            rayEpsilon = 5e-4d * tHit;
            return true;
        }
 public static Normal Faceforward(Normal n1, Normal n2)
 {
     return (Dot(n1, n2) < 0.0d) ? -n1 : n1;
 }
 public override Point Sample(double u1, double u2, ref Normal ns)
 {
     double z = Utility.Lerp(u1, zmin, zmax);
     double t = u2 * phiMax;
     Point p = new Point(radius * Math.Cos(t), radius * Math.Sin(t), z);
     ns = Geometry.Normalize(ObjectToWorld.Apply(new Normal(p.x, p.y, 0.0d)));
     if (ReverseOrientation) ns *= -1.0d;
     return ObjectToWorld.Apply(p);
 }
 public static double AbsDot(Normal n1, Normal n2)
 {
     if (n1.HasNaNs() || n2.HasNaNs()) throw new InvalidOperationException();
     return Math.Abs(n1.x * n2.x + n1.y * n2.y + n1.z * n2.z);
 }
Ejemplo n.º 12
0
 public override Point Sample(double u1, double u2, ref Normal ns)
 {
     Point p = new Point();
     MonteCarlo.ConcentricSampleDisk(u1, u2, ref p.x, ref p.y);
     p.x *= radius;
     p.y *= radius;
     p.z = height;
     ns = Geometry.Normalize(ObjectToWorld.Apply(new Normal(0, 0, 1)));
     if (ReverseOrientation) ns *= -1.0d;
     return ObjectToWorld.Apply(p);
 }
 public Spectrum L(Point point, Normal normal, Vector w)
 {
     throw new NotImplementedException();
 }
 public static double Dot(Vector v, Normal n)
 {
     if (v.HasNaNs() || n.HasNaNs()) throw new InvalidOperationException();
     return v.x * n.x + v.y * n.y + v.z * n.z;
 }
 public static double Dot(Normal n, Vector v)
 {
     if (n.HasNaNs() || v.HasNaNs()) throw new InvalidOperationException();
     return n.x * v.x + n.y * v.y + n.z * v.z;
 }
 public static Vector Faceforward(Vector v, Normal n)
 {
     return (Dot(v, n) < 0.0d) ? -v : v;
 }
 public void Apply(Normal n, ref Normal nt)
 {
     double x = n.x, y = n.y, z = n.z;
     nt.x = mInv.m[0, 0] * x + mInv.m[1, 0] * y + mInv.m[2, 0] * z;
     nt.y = mInv.m[0, 1] * x + mInv.m[1, 1] * y + mInv.m[2, 1] * z;
     nt.z = mInv.m[0, 2] * x + mInv.m[1, 2] * y + mInv.m[2, 2] * z;
 }
 public override Point Sample(double u1, double u2, ref Normal ns)
 {
     double b1, b2;
     MonteCarlo.UniformSampleTriangle(u1, u2, out b1, out b2);
     // Get triangle vertices in _p1_, _p2_, and _p3_
     Point p1 = mesh.p[v[0]];
     Point p2 = mesh.p[v[1]];
     Point p3 = mesh.p[v[2]];
     Point p = b1 * p1 + b2 * p2 + (1.0d - b1 - b2) * p3;
     Normal n = new Normal(Geometry.Cross(p2 - p1, p3 - p1));
     ns = Geometry.Normalize(n);
     if (ReverseOrientation) ns *= -1.0d;
     return p;
 }
Ejemplo n.º 19
0
 public Vector(Normal v)
 {
     this.x = v.x;
     this.y = v.y;
     this.z = v.z;
 }
 public static Normal Normalize(Normal n)
 {
     return n / n.Length();
 }
        public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg)
        {
            double phi, v;
            Point phit;

            tHit = Double.NaN;
            rayEpsilon = Double.NaN;
            dg = null;

            // Transform _Ray_ to object space
            Ray ray = WorldToObject.Apply(r);

            // Compute quadratic hyperboloid coefficients
            double A = a * ray.d.x * ray.d.x + a * ray.d.y * ray.d.y - c * ray.d.z * ray.d.z;
            double B = 2.0d * (a * ray.d.x * ray.o.x + a * ray.d.y * ray.o.y - c * ray.d.z * ray.o.z);
            double C = a * ray.o.x * ray.o.x +
                      a * ray.o.y * ray.o.y -
                      c * ray.o.z * ray.o.z - 1;

            // Solve quadratic equation for _t_ values
            double t0, t1;
            if (!Utility.Quadratic(A, B, C, out t0, out t1))
                return false;

            // Compute intersection distance along ray
            if (t0 > ray.maxt || t1 < ray.mint)
                return false;
            double thit = t0;
            if (t0 < ray.mint)
            {
                thit = t1;
                if (thit > ray.maxt) return false;
            }

            // Compute hyperboloid inverse mapping
            phit = ray.GetPointAt(thit);
            v = (phit.z - p1.z) / (p2.z - p1.z);
            Point pr = (1.0d - v) * p1 + v * p2;
            phi = Math.Atan2(pr.x * phit.y - phit.x * pr.y,
                phit.x * pr.x + phit.y * pr.y);
            if (phi < 0)
                phi += 2 * Math.PI;

            // Test hyperboloid intersection against clipping parameters
            if (phit.z < zmin || phit.z > zmax || phi > phiMax)
            {
                if (thit == t1) return false;
                thit = t1;
                if (t1 > ray.maxt) return false;
                // Compute hyperboloid inverse mapping
                phit = ray.GetPointAt(thit);
                v = (phit.z - p1.z) / (p2.z - p1.z);
                pr = (1.0d - v) * p1 + v * p2;
                phi = Math.Atan2(pr.x * phit.y - phit.x * pr.y,
                    phit.x * pr.x + phit.y * pr.y);
                if (phi < 0)
                    phi += 2 * Math.PI;
                if (phit.z < zmin || phit.z > zmax || phi > phiMax)
                    return false;
            }

            // Compute parametric representation of hyperboloid hit
            double u = phi / phiMax;

            // Compute hyperboloid $\dpdu$ and $\dpdv$
            double cosphi = Math.Cos(phi), sinphi = Math.Sin(phi);
            Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0.0d);
            Vector dpdv = new Vector((p2.x - p1.x) * cosphi - (p2.y - p1.y) * sinphi, (p2.x - p1.x) * sinphi + (p2.y - p1.y) * cosphi, p2.z - p1.z);

            // Compute hyperboloid $\dndu$ and $\dndv$
            Vector d2Pduu = -phiMax * phiMax * new Vector(phit.x, phit.y, 0);
            Vector d2Pduv = phiMax * new Vector(-dpdv.y, dpdv.x, 0.0d);
            Vector d2Pdvv = new Vector(0, 0, 0);

            // Compute coefficients for fundamental forms
            double E = Geometry.Dot(dpdu, dpdu);
            double F = Geometry.Dot(dpdu, dpdv);
            double G = Geometry.Dot(dpdv, dpdv);
            Vector N = Geometry.Normalize(Geometry.Cross(dpdu, dpdv));
            double e = Geometry.Dot(N, d2Pduu);
            double f = Geometry.Dot(N, d2Pduv);
            double g = Geometry.Dot(N, d2Pdvv);

            // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
            double invEGF2 = 1.0d / (E * G - F * F);
            Normal dndu = new Normal((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv);
            Normal dndv = new Normal((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv);

            // Initialize _DifferentialGeometry_ from parametric information
            Transform o2w = ObjectToWorld;
            dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this);

            // Update _tHit_ for quadric intersection
            tHit = thit;

            // Compute _rayEpsilon_ for quadric intersection
            rayEpsilon = 5e-4d * tHit;
            return true;
        }
Ejemplo n.º 22
0
 public override Point Sample(double u1, double u2, ref Normal ns)
 {
     Point p = new Point(0, 0, 0) + radius * MonteCarlo.UniformSampleSphere(u1, u2);
     ns = Geometry.Normalize(ObjectToWorld.Apply(new Normal(p.x, p.y, p.z)));
     if (ReverseOrientation) ns *= -1.0d;
     return ObjectToWorld.Apply(p);
 }
        public override void GetShadingGeometry(Transform obj2world, DifferentialGeometry dg, out DifferentialGeometry dgShading)
        {
            if (mesh.n == null && mesh.s == null)
            {
                dgShading = dg;
                return;
            }
            // Initialize _Triangle_ shading geometry with _n_ and _s_

            // Compute barycentric coordinates for point
            double[] b = new double[3];

            // Initialize _A_ and _C_ matrices for barycentrics
            double[,] uv = new double[3, 2];
            GetUVs(uv);
            double[,] A = { { uv[1,0] - uv[0,0], uv[2,0] - uv[0,0] },
                          { uv[1,1] - uv[0,1], uv[2,1] - uv[0,1] } };
            double[] C = { dg.u - uv[0, 0], dg.v - uv[0, 1] };
            if (!Utility.SolveLinearSystem2x2(A, C, out b[1], out b[2]))
            {
                // Handle degenerate parametric mapping
                b[0] = b[1] = b[2] = 1.0f / 3.0f;
            }
            else
                b[0] = 1.0d - b[1] - b[2];

            // Use _n_ and _s_ to compute shading tangents for triangle, _ss_ and _ts_
            Normal ns;
            Vector ss, ts;
            if (mesh.n != null) ns = Geometry.Normalize(obj2world.Apply(b[0] * mesh.n[v[0]] +
                                                    b[1] * mesh.n[v[1]] +
                                                    b[2] * mesh.n[v[2]]));
            else ns = dg.nn;
            if (mesh.s != null) ss = Geometry.Normalize(obj2world.Apply(b[0] * mesh.s[v[0]] +
                                                    b[1] * mesh.s[v[1]] +
                                                    b[2] * mesh.s[v[2]]));
            else ss = Geometry.Normalize(dg.dpdu);

            ts = Geometry.Cross(ss, ns);
            if (ts.LengthSquared() > 0.0d)
            {
                ts = Geometry.Normalize(ts);
                ss = Geometry.Cross(ts, ns);
            }
            else
                Geometry.CoordinateSystem(new Vector(ns), out ss, out ts);
            Normal dndu, dndv;

            // Compute $\dndu$ and $\dndv$ for triangle shading geometry
            if (mesh.n != null)
            {
                double[,] uvs = new double[3, 2];
                GetUVs(uvs);
                // Compute deltas for triangle partial derivatives of normal
                double du1 = uvs[0, 0] - uvs[2, 0];
                double du2 = uvs[1, 0] - uvs[2, 0];
                double dv1 = uvs[0, 1] - uvs[2, 1];
                double dv2 = uvs[1, 1] - uvs[2, 1];
                Normal dn1 = mesh.n[v[0]] - mesh.n[v[2]];
                Normal dn2 = mesh.n[v[1]] - mesh.n[v[2]];
                double determinant = du1 * dv2 - dv1 * du2;
                if (determinant == 0.0d)
                    dndu = dndv = new Normal(0, 0, 0);
                else
                {
                    double invdet = 1.0d / determinant;
                    dndu = (dv2 * dn1 - dv1 * dn2) * invdet;
                    dndv = (-du2 * dn1 + du1 * dn2) * invdet;
                }
            }
            else
                dndu = dndv = new Normal(0, 0, 0);
            dgShading = new DifferentialGeometry(dg.p, ss, ts,
                ObjectToWorld.Apply(dndu), ObjectToWorld.Apply(dndv), dg.u, dg.v, dg.shape);
            dgShading.dudx = dg.dudx; dgShading.dvdx = dg.dvdx;
            dgShading.dudy = dg.dudy; dgShading.dvdy = dg.dvdy;
            dgShading.dpdx = dg.dpdx; dgShading.dpdy = dg.dpdy;
        }
Ejemplo n.º 24
0
        public override Point Sample(Point p, double u1, double u2, ref Normal ns)
        {
            // Compute coordinate system for sphere sampling
            Point Pcenter = ObjectToWorld.Apply(new Point(0, 0, 0));
            Vector wc = Geometry.Normalize(Pcenter - p);
            Vector wcX, wcY;
            Geometry.CoordinateSystem(wc, out wcX, out wcY);

            // Sample uniformly on sphere if $\pt{}$ is inside it
            if (Geometry.DistanceSquared(p, Pcenter) - radius * radius < 1e-4f)
                return Sample(u1, u2, ref ns);

            // Sample sphere uniformly inside subtended cone
            double sinThetaMax2 = radius * radius / Geometry.DistanceSquared(p, Pcenter);
            double cosThetaMax = Math.Sqrt(Math.Max(0.0d, 1.0d - sinThetaMax2));
            DifferentialGeometry dgSphere;
            double thit, rayEpsilon;
            Point ps;
            Ray r = new Ray(p, MonteCarlo.UniformSampleCone(u1, u2, cosThetaMax, wcX, wcY, wc), 1e-3d);
            if (!Intersect(r, out thit, out rayEpsilon, out dgSphere))
                thit = Geometry.Dot(Pcenter - p, Geometry.Normalize(r.d));
            ps = r.GetPointAt(thit);
            ns = new Normal(Geometry.Normalize(ps - Pcenter));
            if (ReverseOrientation) ns *= -1.0d;
            return ps;
        }
        public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg)
        {
            double phi;
            Point phit;

            tHit = Double.NaN;
            rayEpsilon = Double.NaN;
            dg = null;

            // Transform _Ray_ to object space
            Ray ray = WorldToObject.Apply(r);

            // Compute quadratic paraboloid coefficients
            double k = zmax / (radius * radius);
            double A = k * (ray.d.x * ray.d.x + ray.d.y * ray.d.y);
            double B = 2 * k * (ray.d.x * ray.o.x + ray.d.y * ray.o.y) -
                        ray.d.z;
            double C = k * (ray.o.x * ray.o.x + ray.o.y * ray.o.y) -
                        ray.o.z;

            // Solve quadratic equation for _t_ values
            double t0, t1;
            if (!Utility.Quadratic(A, B, C, out t0, out t1))
                return false;

            // Compute intersection distance along ray
            if (t0 > ray.maxt || t1 < ray.mint)
                return false;
            double thit = t0;
            if (t0 < ray.mint)
            {
                thit = t1;
                if (thit > ray.maxt) return false;
            }

            // Compute paraboloid inverse mapping
            phit = ray.GetPointAt(thit);
            phi = Math.Atan2(phit.y, phit.x);
            if (phi < 0.0d) phi += 2.0d * Math.PI;

            // Test paraboloid intersection against clipping parameters
            if (phit.z < zmin || phit.z > zmax || phi > phiMax)
            {
                if (thit == t1) return false;
                thit = t1;
                if (t1 > ray.maxt) return false;
                // Compute paraboloid inverse mapping
                phit = ray.GetPointAt(thit);
                phi = Math.Atan2(phit.y, phit.x);
                if (phi < 0.0d) phi += 2.0d * Math.PI;
                if (phit.z < zmin || phit.z > zmax || phi > phiMax)
                    return false;
            }

            // Find parametric representation of paraboloid hit
            double u = phi / phiMax;
            double v = (phit.z - zmin) / (zmax - zmin);

            // Compute parabaloid $\dpdu$ and $\dpdv$
            Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0.0d);
            Vector dpdv = (zmax - zmin) * new Vector(phit.x / (2.0d * phit.z), phit.y / (2.0d * phit.z), 1.0d);

            // Compute parabaloid $\dndu$ and $\dndv$
            Vector d2Pduu = -phiMax * phiMax * new Vector(phit.x, phit.y, 0);
            Vector d2Pduv = (zmax - zmin) * phiMax * new Vector(-phit.y / (2.0d * phit.z), phit.x / (2.0d * phit.z), 0);
            Vector d2Pdvv = -(zmax - zmin) * (zmax - zmin) * new Vector(phit.x / (4.0d * phit.z * phit.z), phit.y / (4.0d * phit.z * phit.z), 0.0d);

            // Compute coefficients for fundamental forms
            double E = Geometry.Dot(dpdu, dpdu);
            double F = Geometry.Dot(dpdu, dpdv);
            double G = Geometry.Dot(dpdv, dpdv);
            Vector N = Geometry.Normalize(Geometry.Cross(dpdu, dpdv));
            double e = Geometry.Dot(N, d2Pduu);
            double f = Geometry.Dot(N, d2Pduv);
            double g = Geometry.Dot(N, d2Pdvv);

            // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
            double invEGF2 = 1.0d / (E * G - F * F);
            Normal dndu = new Normal((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv);
            Normal dndv = new Normal((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv);

            // Initialize _DifferentialGeometry_ from parametric information
            Transform o2w = ObjectToWorld;
            dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this);

            // Update _tHit_ for quadric intersection
            tHit = thit;

            // Compute _rayEpsilon_ for quadric intersection
            rayEpsilon = 5e-4d * tHit;
            return true;
        }
 public static Normal Faceforward(Normal n, Vector v)
 {
     return (Dot(n, v) < 0.0d) ? -n : n;
 }