Ejemplo n.º 1
0
        /// <summary>
        /// Applies the gradients to the weights as a batch
        /// </summary>
        /// <param name="batchsize">The number of trials run per cycle</param>
        /// <param name="clipparameter">What the max/min </param>
        /// <param name="RMSDecay">How quickly the RMS gradients decay</param>
        public override void Descend()
        {
            //Calculate gradients
            WUpdates = new double[Length, InputLength];
            BUpdates = new double[Length];

            for (int i = 0; i < Length; i++)
            {
                for (int ii = 0; ii < InputLength; ii++)
                {
                    //Normal gradient descent update
                    WUpdates[i, ii] = WeightGradient[i, ii] * (2d / NN.BatchSize);
                    //Root mean square propegation
                    if (NN.UseRMSProp)
                    {
                        WRMSGrad[i, ii] = (WRMSGrad[i, ii] * NN.RMSDecay) + ((1 - NN.RMSDecay) * (WUpdates[i, ii] * WUpdates[i, ii]));
                        WUpdates[i, ii] = (WUpdates[i, ii] / (Math.Sqrt(WRMSGrad[i, ii]) /* + NN.Infinitesimal*/));
                    }
                    WUpdates[i, ii] *= NN.LearningRate;
                }
                //Normal gradient descent update
                BUpdates[i] = BiasGradient[i] * (2d / NN.BatchSize);
                //Root mean square propegation
                if (NN.UseRMSProp)
                {
                    BRMSGrad[i] = (BRMSGrad[i] * NN.RMSDecay) + ((1 - NN.RMSDecay) * (BUpdates[i] * BUpdates[i]));
                    BUpdates[i] = (BUpdates[i] / (Math.Sqrt(BRMSGrad[i]) /* + NN.Infinitesimal*/));
                }
                BUpdates[i] *= NN.LearningRate;
            }
            //Gradient normalization
            if (NN.NormGradients)
            {
                WUpdates = Maths.Scale(NN.LearningRate, Maths.Normalize(WUpdates));
                BUpdates = Maths.Scale(NN.LearningRate, Maths.Normalize(BUpdates));
            }
            //Apply updates
            for (int i = 0; i < Length; i++)
            {
                for (int ii = 0; ii < InputLength; ii++)
                {
                    //Update weight and average
                    Weights[i, ii] -= WUpdates[i, ii];
                    AvgGradient    -= WUpdates[i, ii];
                    //Weight clipping
                    if (NN.UseClipping)
                    {
                        if (Weights[i, ii] > NN.ClipParameter)
                        {
                            Weights[i, ii] = NN.ClipParameter;
                        }
                        if (Weights[i, ii] < -NN.ClipParameter)
                        {
                            Weights[i, ii] = -NN.ClipParameter;
                        }
                    }
                }
                Biases[i] -= BUpdates[i];
                //Bias clipping
                if (NN.UseClipping)
                {
                    if (Biases[i] > NN.ClipParameter)
                    {
                        Biases[i] = NN.ClipParameter;
                    }
                    if (Biases[i] < -NN.ClipParameter)
                    {
                        Biases[i] = -NN.ClipParameter;
                    }
                }
            }

            //Reset gradients
            WeightGradient = new double[Length, InputLength];
            BiasGradient   = new double[Length];
        }
Ejemplo n.º 2
0
 /// <summary>
 /// Calculates the dot product of the kernel and input matrix.
 /// Matrices should be size [x, y] and [y], respectively, where x is the output size and y is the latent space's size
 /// </summary>
 /// <param name="inputs">The input matrix</param>
 /// <param name="isoutput">Whether to use hyperbolic tangent on the output</param>
 /// <returns></returns>
 public override void Calculate(List <double[]> inputs, bool isoutput)
 {
     ZVals = new List <double[]>();
     for (int b = 0; b < NN.BatchSize; b++)
     {
         ZVals.Add(Maths.Convert(DownOrUp ? Convolve(Weights, Pad(Maths.Convert(inputs[b]))) : FullConvolve(Weights, Pad(Maths.Convert(inputs[b])))));
     }
     //If normalizing, do so, but only if it won't return an all-zero matrix
     if (NN.NormOutputs && ZVals[0].Length > 1)
     {
         ZVals = Maths.Normalize(ZVals);
     }
     //Use the specified type of activation function
     if (ActivationFunction == 0)
     {
         Values = Maths.Tanh(ZVals); return;
     }
     if (ActivationFunction == 1)
     {
         Values = Maths.ReLu(ZVals); return;
     }
     Values = ZVals;
 }
Ejemplo n.º 3
0
        /// <summary>
        /// Computes the error signal of the layer, also gradients if applicable
        /// </summary>
        /// <param name="input">Previous layer's values</param>
        /// <param name="output">Whether the layer is the output layer</param>
        /// <param name="loss">The loss of the layer</param>
        /// <param name="calcgradients">Whether or not to calculate gradients in the layer</param>
        public void Backprop(List <double[]> inputs, Layer outputlayer, double loss, bool calcgradients)
        {
            //Reset errors
            Errors = new List <double[]>();

            //Calculate errors
            if (outputlayer is null)
            {
                for (int j = 0; j < inputs.Count; j++)
                {
                    Errors.Add(new double[Length]);
                    for (int i = 0; i < Length; i++)
                    {
                        //(i == loss ? 1d : 0d)
                        Errors[j][i] = 2d * (Values[j][i] - loss);
                    }
                }
            }
            else
            {
                for (int i = 0; i < inputs.Count; i++)
                {
                    Errors.Add(new double[outputlayer.InputLength]);
                }
                if (outputlayer is SumLayer)
                {
                    //Errors with respect to the output of the convolution
                    //dl/do
                    for (int i = 0; i < outputlayer.ZVals.Count; i++)
                    {
                        for (int k = 0; k < outputlayer.Length; k++)
                        {
                            for (int j = 0; j < outputlayer.InputLength; j++)
                            {
                                Errors[i][j] += outputlayer.Errors[i][k];
                            }
                        }
                    }
                }

                //Apply tanhderriv, if applicable, to the output's zvals
                var outputZVals = outputlayer.ZVals;
                if (outputlayer.ActivationFunction == 0)
                {
                    outputZVals = Maths.TanhDerriv(outputlayer.ZVals);
                }
                if (outputlayer.ActivationFunction == 1)
                {
                    outputZVals = Maths.ReLuDerriv(outputlayer.ZVals);
                }

                if (outputlayer is FullyConnectedLayer)
                {
                    var FCLOutput = outputlayer as FullyConnectedLayer;
                    for (int i = 0; i < outputlayer.ZVals.Count; i++)
                    {
                        for (int k = 0; k < FCLOutput.Length; k++)
                        {
                            for (int j = 0; j < FCLOutput.InputLength; j++)
                            {
                                Errors[i][j] += FCLOutput.Weights[k, j] * outputZVals[i][k] * FCLOutput.Errors[i][k];
                            }
                        }
                    }
                }
                if (outputlayer is ConvolutionLayer)
                {
                    var CLOutput = outputlayer as ConvolutionLayer;
                    for (int i = 0; i < outputlayer.ZVals.Count; i++)
                    {
                        if ((outputlayer as ConvolutionLayer).DownOrUp)
                        {
                            Errors[i] = Maths.Convert(CLOutput.UnPad(CLOutput.FullConvolve(CLOutput.Weights, Maths.Convert(CLOutput.Errors[i]))));
                        }
                        else
                        {
                            Errors[i] = Maths.Convert(CLOutput.UnPad(CLOutput.Convolve(CLOutput.Weights, Maths.Convert(CLOutput.Errors[i]))));
                        }
                    }

                    //Errors = Maths.Convert(CLOutput.UnPad(CLOutput.FullConvolve(CLOutput.Weights, Maths.Convert(CLOutput.Errors))));
                }
                if (outputlayer is PoolingLayer)
                {
                    var PLOutput = outputlayer as PoolingLayer;
                    for (int b = 0; b < NN.BatchSize; b++)
                    {
                        if (PLOutput.DownOrUp)
                        {
                            int iterator = 0;
                            var wets     = Maths.Convert(PLOutput.Weights);
                            for (int i = 0; i < Length; i++)
                            {
                                if (wets[i] == 0)
                                {
                                    continue;
                                }
                                Errors[b][i] = PLOutput.Errors[b][iterator];
                                iterator++;
                            }
                        }
                        else
                        {
                            //Sum the errors
                            double[,] outputerrors = Maths.Convert(PLOutput.Errors[b]);
                            int oel = outputerrors.GetLength(0);
                            int oew = outputerrors.GetLength(1);
                            double[,] errors = new double[oel / PLOutput.PoolSize, oew / PLOutput.PoolSize];
                            for (int i = 0; i < oel; i++)
                            {
                                for (int ii = 0; ii < oew; ii++)
                                {
                                    errors[i / PLOutput.PoolSize, ii / PLOutput.PoolSize] += outputerrors[i, ii];
                                }
                            }
                            Errors[b] = Maths.Convert(errors);
                        }
                    }
                }
            }
            //Normalize errors (if applicable)
            if (NN.NormErrors && Errors[0].Length > 1)
            {
                Errors = Maths.Normalize(Errors);
            }
            if (calcgradients)
            {
                if (this is FullyConnectedLayer)
                {
                    (this as FullyConnectedLayer).CalcGradients(inputs, outputlayer);
                }
                if (this is ConvolutionLayer)
                {
                    (this as ConvolutionLayer).CalcGradients(inputs, outputlayer);
                }
                if (this is PoolingLayer)
                {
                    return;
                }
                if (this is SumLayer)
                {
                    return;
                }
            }
        }