Ejemplo n.º 1
0
        public async Task <Vgg19ModelOutput> EvaluateAsync(Vgg19ModelInput input)
        {
            Vgg19ModelOutput            output  = new Vgg19ModelOutput();
            LearningModelBindingPreview binding = new LearningModelBindingPreview(learningModel);

            binding.Bind("data_0", input.data_0);
            binding.Bind("prob_1", output.prob_1);
            LearningModelEvaluationResultPreview evalResult = await learningModel.EvaluateAsync(binding, string.Empty);

            return(output);
        }
Ejemplo n.º 2
0
        private async void recognizeButton_Click(object sender, RoutedEventArgs e)
        {
            FileOpenPicker fileOpenPicker = new FileOpenPicker();

            fileOpenPicker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
            fileOpenPicker.FileTypeFilter.Add(".jpg");
            fileOpenPicker.FileTypeFilter.Add(".bmp");
            fileOpenPicker.FileTypeFilter.Add(".png");
            fileOpenPicker.ViewMode = PickerViewMode.Thumbnail;
            var inputFile = await fileOpenPicker.PickSingleFileAsync();

            if (inputFile == null)
            {
                // The user cancelled the picking operation
                return;
            }
            imageLabel.Text = "Recognizing...";
            SoftwareBitmap softwareBitmap;

            using (IRandomAccessStream stream = await inputFile.OpenAsync(FileAccessMode.Read))
            {
                // Create the decoder from the stream
                BitmapDecoder decoder = await BitmapDecoder.CreateAsync(stream);

                // Get the SoftwareBitmap representation of the file
                softwareBitmap = await decoder.GetSoftwareBitmapAsync();

                softwareBitmap = SoftwareBitmap.Convert(softwareBitmap, BitmapPixelFormat.Bgra8, BitmapAlphaMode.Ignore);
                var source = new SoftwareBitmapSource();
                await source.SetBitmapAsync(softwareBitmap);

                previewImage.Source = source;

                VideoFrame vf = VideoFrame.CreateWithSoftwareBitmap(softwareBitmap);
                await CropImageAsync(vf);

                ModelInput.data_0 = cropped_vf;
                ModelOutput       = await ModelGen.EvaluateAsync(ModelInput);

                float maxProb  = 0;
                int   maxIndex = 0;
                for (int i = 0; i < ModelOutput.prob_1.Count; i++)
                {
                    if (ModelOutput.prob_1[i] > maxProb)
                    {
                        maxIndex = i;
                        maxProb  = ModelOutput.prob_1[i];
                    }
                }
                imageLabel.Text = string.Format("{0}\r\n({1})", classList.classList[maxIndex], maxProb);
            }
        }