/// <summary>
        /// Method that returns a deep-copy clone of the current GP
        /// </summary>
        /// <returns>The deep-copy clone</returns>
        public virtual TGPProgram Clone()
        {
            TGPProgram clone = new TGPProgram(mOperatorSet, mVariableSet, mConstantSet, mPrimitiveSet);

            clone.Copy(this);

            return(clone);
        }
        /// <summary>
        /// Method that performs deep copy of another GP
        /// </summary>
        /// <param name="rhs">The GP to copy</param>
        public virtual void Copy(TGPProgram rhs)
        {
            mDepth  = rhs.mDepth;
            mLength = rhs.mLength;

            if (rhs.mRootNode != null)
            {
                mRootNode = rhs.mRootNode.Clone();
            }
        }
 /// <summary>
 /// Method that returns whether the current GP is better than another GP in quality
 /// </summary>
 /// <param name="rhs">The GP to compare with</param>
 /// <returns>True if the current GP is better</returns>
 public virtual bool IsBetterThan(TGPProgram rhs)
 {
     if (mDepth < rhs.Depth)
     {
         return(true);
     }
     else if (mDepth == rhs.Depth)
     {
         if (mLength < rhs.Length)
         {
             return(true);
         }
         else
         {
             return(false);
         }
     }
     else
     {
         return(false);
     }
 }
Ejemplo n.º 4
0
        public void SubtreeCrossover(IGPSolution _rhs, int iMaxDepthForCrossOver, string method, object tag = null)
        {
            TGPSolution rhs        = (TGPSolution)_rhs;
            int         tree_count = mTrees.Count;

            for (int i = 0; i < tree_count; ++i)
            {
                if (tree_count > 1 && DistributionModel.GetUniform() < 0.5)
                {
                    TGPProgram temp = rhs.mTrees[i];
                    rhs.mTrees[i] = mTrees[i];
                    mTrees[i]     = temp;
                }
                else
                {
                    mTrees[i].SubtreeCrossover(rhs.mTrees[i], iMaxDepthForCrossOver, method, tag);
                }
            }


            TrashFitness();
            rhs.TrashFitness();
        }
Ejemplo n.º 5
0
        public void Analyze(List <S> solutions)
        {
            int[]    primitive_count_array  = new int[mPrimitives.Count];
            int[]    variable_count_array   = new int[mVariables.Count];
            double[] variable_fitness_array = new double[mVariables.Count];

            for (int i = 0; i < primitive_count_array.Length; ++i)
            {
                primitive_count_array[i] = 0;
            }
            for (int i = 0; i < variable_fitness_array.Length; ++i)
            {
                variable_fitness_array[i] = 0;
                variable_count_array[i]   = 0;
            }

            double average_fitness = 0;

            foreach (S solution in solutions)
            {
                average_fitness += FindSolutionFitness(solution);
            }
            if (solutions.Count > 0)
            {
                average_fitness /= solutions.Count;
            }

            foreach (S solution in solutions)
            {
                double fitness = FindSolutionFitness(solution);
                if (fitness < average_fitness)
                {
                    fitness = 0;
                }

                for (int i = 0; i < solution.ProgramCount; ++i)
                {
                    TGPProgram          p     = solution.FindProgramAt(i) as TGPProgram;
                    List <TGPPrimitive> plist = p.FlattenPrimitives();
                    int variable_count        = 0;
                    foreach (TGPPrimitive primitive in plist)
                    {
                        if (IsVariable(primitive))
                        {
                            variable_count++;
                        }
                    }

                    double primitive_fitness = fitness;

                    if (variable_count > 0)
                    {
                        primitive_fitness /= variable_count;
                    }
                    foreach (TGPPrimitive te in plist)
                    {
                        int id = mPrimitiveIdentifiers[te.Symbol];
                        primitive_count_array[id] += 1;
                        if (mVariableIdentifiers.ContainsKey(te.Symbol))
                        {
                            id = mVariableIdentifiers[te.Symbol];
                            variable_fitness_array[id] += primitive_fitness;
                            variable_count_array[id]   += 1;
                        }
                    }
                }
            }
            mPrimitiveCountMatrix.Add(primitive_count_array);
            mVariableCountMatrix.Add(variable_count_array);
            mFitnessMatrix.Add(variable_fitness_array);
        }
        /// <summary>
        /// Method that implements the subtree crossover described in Section 2.4 of "A Field Guide to Genetic Programming"
        /// </summary>
        /// <param name="rhs">Another tree to be crossover with</param>
        /// <param name="iMaxDepthForCrossover">The maximum depth of the trees after the crossover</param>
        public virtual void SubtreeCrossover(TGPProgram rhs, int iMaxDepthForCrossover, string method, object tag = null)
        {
            if (method == CROSSOVER_SUBTREE_BIAS || method == CROSSVOER_SUBTREE_NO_BIAS)
            {
                bool bias = (method == CROSSOVER_SUBTREE_BIAS);

                int iMaxDepth1 = CalcDepth();
                int iMaxDepth2 = rhs.CalcDepth();

                TGPNode pCutPoint1 = null;
                TGPNode pCutPoint2 = null;

                bool is_crossover_performed = false;
                // Suppose that at the beginning both the current GP and the other GP do not violate max depth constraint
                // then try to see whether a crossover can be performed in such a way that after the crossover, both GP still have depth <= max depth
                if (iMaxDepth1 <= iMaxDepthForCrossover && iMaxDepth2 <= iMaxDepthForCrossover)
                {
                    int max_trials = 50;
                    int trials     = 0;
                    do
                    {
                        pCutPoint1 = FindRandomNode(bias);
                        pCutPoint2 = rhs.FindRandomNode(bias);

                        if (pCutPoint1 != null && pCutPoint2 != null)
                        {
                            pCutPoint1.Swap(pCutPoint2);

                            iMaxDepth1 = CalcDepth();
                            iMaxDepth2 = rhs.CalcDepth();

                            if (iMaxDepth1 <= iMaxDepthForCrossover && iMaxDepth2 <= iMaxDepthForCrossover) //crossover is successful
                            {
                                is_crossover_performed = true;
                                break;
                            }
                            else
                            {
                                pCutPoint1.Swap(pCutPoint2); // swap back so as to restore to the original GP trees if the crossover is not valid due to max depth violation
                            }
                        }

                        trials++;
                    } while (trials < max_trials);
                }

                // force at least one crossover even if the maximum depth is violated above so that this operator won't end up like a reproduction operator
                if (!is_crossover_performed)
                {
                    pCutPoint1 = FindRandomNode(bias);
                    pCutPoint2 = rhs.FindRandomNode(bias);

                    if (pCutPoint1 != null && pCutPoint2 != null)
                    {
                        pCutPoint1.Swap(pCutPoint2);


                        CalcLength();
                        rhs.CalcLength();
                    }
                }
            }
        }