Ejemplo n.º 1
0
        /// <summary>
        /// Decompiles the method to an explicit state machine representation
        /// </summary>
        /// <returns>decopmiled method</returns>
        public IDecompilationResult DecompileToFSM()
        {
            InitializeCFGs();

            int numILStates = _stateCFGs.Length;
            var design = _code.GetDesign();
            var owner = _code.Owner as ComponentDescriptor;
            var myps = _code as ProcessDescriptor;

            // Decompile state handlers
            _stateInfos = new Dictionary<StateInfo, StateInfo>();
            var decomp = new MSILDecompiler(_code, _stateCFGs[1], _fsmInstance);
            _curTempl = decomp.Template;
            _curTempl.AddAttribute(this);
            _curTempl.DisallowReturnStatements = true;
            _curTempl.DisallowConditionals = true;
            _curTempl.DisallowLoops = true;
            var lvState = _curTempl.ExportLocalVariableState();
            var startSI = new StateInfo(0);
            foreach (var kvp in _locFields)
                startSI.LVState[kvp.Key] = kvp.Value.Type.GetSampleInstance(ETypeCreationOptions.ForceCreation);
            _stateInfos[startSI] = startSI;
            _curSI = startSI;
            var stateList = new List<StateInfo>();
            stateList.Add(startSI);
            _stateQ = new Queue<StateInfo>();
            startSI.Result = decomp.Decompile();
            while (_stateQ.Any())
            {
                var nextSI = _stateQ.Dequeue();
                _curSI = nextSI.Fork(nextSI.ILState);
                decomp = new MSILDecompiler(_code, _stateCFGs[nextSI.ILState + 1], _fsmInstance);
                _curTempl = decomp.Template;
                _curTempl.AddAttribute(this);
                _curTempl.DisallowReturnStatements = true;
                _curTempl.DisallowConditionals = true;
                _curTempl.DisallowLoops = true;
                _curSI.Result = decomp.Decompile();
                stateList.Add(_curSI);
                _stateInfos[_curSI] = _curSI;
            }

            // Create enumeration type for state
            string prefix = _code.Name;
            string enumName = "t_" + prefix + "_state";
            var stateNames = new List<string>();
            for (int i = 0; i < stateList.Count; i++)
            {
                string name;
                if (stateList[i].HasWaitState)
                {
                    name = enumName + "_await_" + i;
                    stateNames.Add(name);
                }
                name = enumName + "_" + i;
                stateNames.Add(name);
            }
            int numStates = stateNames.Count;
            Statement[] states;
            SignalDescriptor stateSignal = null;

            if (numStates > 1)
            {
                var enumType = design.CreateEnum(enumName, stateNames);
                _stateValues = enumType.CILType.GetEnumValues();
                var enumDefault = _stateValues.GetValue(0);
                int j = 0;
                for (int i = 0; i < stateList.Count; i++)
                {
                    if (stateList[i].HasWaitState)
                        stateList[i].WaitStateValue = _stateValues.GetValue(j++);
                    stateList[i].StateValue = _stateValues.GetValue(j++);
                }

                // Create signals for state
                string stateSignalName = prefix + "_state";
                stateSignal = owner.CreateSignalInstance(stateSignalName, enumDefault);
                _nextStateSignal = stateSignal;

                // Implement state joins
                states = new Statement[numStates];
                j = 0;
                for (int i = 0; i < stateList.Count; i++)
                {
                    if (stateList[i].HasWaitState)
                    {
                        var wsb = new DefaultAlgorithmBuilder();
                        ImplementJoin(stateList[i].JP, wsb, stateList[i]);
                        var join = wsb.Complete();
                        states[j++] = join.Body;
                    }
                    states[j++] = stateList[i].Result.Decompiled.Body;
                }
                // Replace ProceedWithState calls with actual states
                for (j = 0; j < states.Length; j++)
                {
                    var orgBody = states[j];
                    var xform = new StateAssigner(this, orgBody);
                    var state = xform.GetAlgorithm();
                    states[j] = state.Body;
                }
            }
            else
            {
                // Implement state joins
                states = new Statement[1];
                // Replace ProceedWithState calls with actual states
                var xform = new StateAssigner(this, stateList[0].Result.Decompiled.Body, true);
                var state = xform.GetAlgorithm();
                states[0] = state.Body;
            }

            var calledMethods = stateList
                .SelectMany(b => b.Result.CalledMethods)
                .Distinct()
                .ToList();
            var calledSyncMethods = calledMethods
                .Where(mci => !mci.Method.IsAsync())
                .ToList();

            var referencedFields = stateList
                .SelectMany(b => b.Result.ReferencedFields)
                .Distinct()
                .ToList();

            var referencedLocals = stateList
                .SelectMany(b => b.Result.Decompiled.LocalVariables)
                .Distinct();

            _coFSMs = DecompileCoFSMs(calledMethods);

            // Extract clock edge
            var predFunc = _context.CurrentProcess.Predicate;
            var predInstRef = LiteralReference.CreateConstant(predFunc.Target);
            var arg = new StackElement(predInstRef, predFunc.Target, EVariability.ExternVariable);
            var edge = _curTempl.GetCallExpression(predFunc.Method, arg).Expr;

            // Synchronous process
            var alg = new DefaultAlgorithmBuilder();
            foreach (var v in referencedLocals)
            {
                alg.DeclareLocal(v);
            }
            alg.If(edge);

            // Co state machines
            foreach (var cofsm in _coFSMs.Order)
            {
                foreach (var argv in cofsm.Arguments)
                    alg.DeclareLocal(argv);
                alg.DeclareLocal(cofsm.DoneVar);
                if (cofsm.ResultVar != null)
                    alg.DeclareLocal(cofsm.ResultVar);

                _curCoFSM = cofsm;
                var weaver = new StateWeaver(this, cofsm.HandlerBody);
                alg.InlineCall(weaver.GetAlgorithm().Body); 
            }

            // Main state machine switch statement
            if (numStates > 1)
            {
                var switchStmt = alg.Switch(
                    SignalRef.Create(stateSignal, SignalRef.EReferencedProperty.Cur));
                {
                    for (int i = 0; i < states.Length; i++)
                    {
                        var stateValue = _stateValues.GetValue(i);
                        alg.Case(LiteralReference.CreateConstant(stateValue));
                        var weaver = new StateWeaver(this, states[i]);
                        alg.InlineCall(weaver.GetAlgorithm().Body);
                        alg.Break(switchStmt);
                        alg.EndCase();
                    }
                }
                alg.EndSwitch();
            }
            else
            {
                var weaver = new StateWeaver(this, states[0]);
                alg.InlineCall(weaver.GetAlgorithm().Body);
            }
            alg.EndIf();
            var syncPS = alg.Complete();
            syncPS.Name = prefix + "$sync";
            myps.Kind = Process.EProcessKind.Triggered;
            myps.Sensitivity = new ISignalOrPortDescriptor[] { ((SignalBase)predFunc.Target).Descriptor };

            return new Result(syncPS, calledSyncMethods, referencedFields);
        }