Ejemplo n.º 1
0
        public void Lazy_EnsureSingleThreadSafeExecution()
        {
            counter = 42;

            var l = new Lazy <int>(delegate() { return(counter++); }, true);

            object monitor = new object();
            var    threads = new Thread[10];

            for (int i = 0; i < 10; ++i)
            {
                threads[i] = new Thread(delegate()
                {
                    lock (monitor)
                    {
                        Monitor.Wait(monitor);
                    }
                    int val = l.Value;
                });
            }
            for (int i = 0; i < 10; ++i)
            {
                threads[i].Start();
            }
            lock (monitor)
                Monitor.PulseAll(monitor);

            Assert.AreEqual(42, l.Value);
        }
Ejemplo n.º 2
0
        public void Monitor_Wait_Invalid()
        {
            var obj = new object();

            AssertExtensions.Throws <ArgumentNullException>("obj", () => Monitor.Wait(null));
            AssertExtensions.Throws <ArgumentNullException>("obj", () => Monitor.Wait(null, 1));
            AssertExtensions.Throws <ArgumentNullException>("obj", () => Monitor.Wait(null, TimeSpan.Zero));
            //AssertExtensions.Throws<ArgumentOutOfRangeException>("millisecondsTimeout", () => Monitor.Wait(null, -1));
            //AssertExtensions.Throws<ArgumentOutOfRangeException>("timeout", () => Monitor.Wait(null, TimeSpan.FromMilliseconds(-1)));
            AssertExtensions.Throws <ArgumentNullException>("obj", () => Monitor.Wait(null, -1));
            AssertExtensions.Throws <ArgumentNullException>("obj", () => Monitor.Wait(null, TimeSpan.FromMilliseconds(-1)));
        }
Ejemplo n.º 3
0
        public void Monitor_WaitTest()
        {
            var obj       = new object();
            var waitTests =
                new Func <bool>[]
            {
                () => Monitor.Wait(obj, FailTimeoutMilliseconds),
                () => Monitor.Wait(obj, FailTimeoutMilliseconds),
                () => Monitor.Wait(obj, TimeSpan.FromMilliseconds(FailTimeoutMilliseconds)),
                () => Monitor.Wait(obj, TimeSpan.FromMilliseconds(FailTimeoutMilliseconds)),
            };

            var t =
                new Thread(() =>
            {
                Monitor.Enter(obj);
                for (int i = 0; i < waitTests.Length; ++i)
                {
                    Monitor.Pulse(obj);
                    Monitor.Wait(obj, FailTimeoutMilliseconds);
                }
                Monitor.Exit(obj);
            });

            t.IsBackground = true;

            Monitor.Enter(obj);
            t.Start();
            int counter = 0;

            foreach (var waitTest in waitTests)
            {
                Assert.IsTrue(waitTest(), "#" + counter.ToString());
                Monitor.Pulse(obj);
                counter++;
            }
            Monitor.Exit(obj);
        }
Ejemplo n.º 4
0
        /// <summary>
        /// Blocks the current thread until the current <see cref="ManualResetEventSlim"/> is set, using a
        /// 32-bit signed integer to measure the time interval, while observing a <see
        /// cref="T:System.Threading.CancellationToken"/>.
        /// </summary>
        /// <param name="millisecondsTimeout">The number of milliseconds to wait, or <see
        /// cref="Timeout.Infinite"/>(-1) to wait indefinitely.</param>
        /// <param name="cancellationToken">The <see cref="T:System.Threading.CancellationToken"/> to
        /// observe.</param>
        /// <returns>true if the <see cref="System.Threading.ManualResetEventSlim"/> was set; otherwise,
        /// false.</returns>
        /// <exception cref="T:System.ArgumentOutOfRangeException"><paramref name="millisecondsTimeout"/> is a
        /// negative number other than -1, which represents an infinite time-out.</exception>
        /// <exception cref="T:System.InvalidOperationException">
        /// The maximum number of waiters has been exceeded.
        /// </exception>
        /// <exception cref="T:System.Threading.OperationCanceledException"><paramref
        /// name="cancellationToken"/> was canceled.</exception>
        public bool Wait(int millisecondsTimeout, CancellationToken cancellationToken)
        {
            ThrowIfDisposed();
            cancellationToken.ThrowIfCancellationRequested(); // an early convenience check

            if (millisecondsTimeout < -1)
            {
                throw new ArgumentOutOfRangeException(nameof(millisecondsTimeout));
            }

            if (!IsSet)
            {
                if (millisecondsTimeout == 0)
                {
                    // For 0-timeouts, we just return immediately.
                    return(false);
                }


                // We spin briefly before falling back to allocating and/or waiting on a true event.
                uint startTime = 0;
                bool bNeedTimeoutAdjustment  = false;
                int  realMillisecondsTimeout = millisecondsTimeout; //this will be adjusted if necessary.

                if (millisecondsTimeout != Timeout.Infinite)
                {
                    // We will account for time spent spinning, so that we can decrement it from our
                    // timeout.  In most cases the time spent in this section will be negligible.  But
                    // we can't discount the possibility of our thread being switched out for a lengthy
                    // period of time.  The timeout adjustments only take effect when and if we actually
                    // decide to block in the kernel below.

                    //startTime = TimeoutHelper.GetTime();
                    startTime = (uint)Environment.TickCount;
                    bNeedTimeoutAdjustment = true;
                }

                // Spin
                int spinCount = SpinCount;
                var spinner   = new SpinWait();
                while (spinner.Count < spinCount)
                {
                    spinner.SpinOnce(SpinWait.Sleep1ThresholdForSpinBeforeWait);

                    if (IsSet)
                    {
                        return(true);
                    }

                    if (spinner.Count >= 100 && spinner.Count % 10 == 0) // check the cancellation token if the user passed a very large spin count
                    {
                        cancellationToken.ThrowIfCancellationRequested();
                    }
                }

                // Now enter the lock and wait.
                EnsureLockObjectCreated();

                // We must register and deregister the token outside of the lock, to avoid deadlocks.
                //using (cancellationToken.InternalRegisterWithoutEC(s_cancellationTokenCallback, this))
                using (cancellationToken.Register(s_cancellationTokenCallback, this))
                {
                    lock (m_lock)
                    {
                        // Loop to cope with spurious wakeups from other waits being canceled
                        while (!IsSet)
                        {
                            // If our token was canceled, we must throw and exit.
                            cancellationToken.ThrowIfCancellationRequested();

                            //update timeout (delays in wait commencement are due to spinning and/or spurious wakeups from other waits being canceled)
                            if (bNeedTimeoutAdjustment)
                            {
                                realMillisecondsTimeout = TimeoutHelper.UpdateTimeOut(startTime, millisecondsTimeout);
                                if (realMillisecondsTimeout <= 0)
                                {
                                    return(false);
                                }
                            }

                            // There is a race condition that Set will fail to see that there are waiters as Set does not take the lock,
                            // so after updating waiters, we must check IsSet again.
                            // Also, we must ensure there cannot be any reordering of the assignment to Waiters and the
                            // read from IsSet.  This is guaranteed as Waiters{set;} involves an Interlocked.CompareExchange
                            // operation which provides a full memory barrier.
                            // If we see IsSet=false, then we are guaranteed that Set() will see that we are
                            // waiting and will pulse the monitor correctly.

                            Waiters = Waiters + 1;

                            if (IsSet)     //This check must occur after updating Waiters.
                            {
                                Waiters--; //revert the increment.
                                return(true);
                            }

                            // Now finally perform the wait.
                            try
                            {
                                // ** the actual wait **
                                if (!Monitor2.Wait(m_lock, realMillisecondsTimeout))
                                {
                                    return(false); //return immediately if the timeout has expired.
                                }
                            }
                            finally
                            {
                                // Clean up: we're done waiting.
                                Waiters = Waiters - 1;
                            }

                            // Now just loop back around, and the right thing will happen.  Either:
                            //     1. We had a spurious wake-up due to some other wait being canceled via a different cancellationToken (rewait)
                            // or  2. the wait was successful. (the loop will break)
                        }
                    }
                }
            } // automatically disposes (and deregisters) the callback

            return(true); //done. The wait was satisfied.
        }