Ejemplo n.º 1
0
        static void Main(string[] args)
        {
            String positiveSamplesPath = "D:\\StromaSet\\S-114-HE_64\\training\\stroma";
            String negativeSamplesPath = "D:\\StromaSet\\S-114-HE_64\\training\\not-stroma";
            String rbmSavePath = "D:\\StromaSet\\weights";

            String rbm0WeightsPath = "D:\\StromaSet\\weights\\RBM0_T1_769_500_139_0,04191353.weights";
            String rbm1WeightsPath = "D:\\StromaSet\\weights\\RBM1_T1_500_75_375_0,07180008.weights";
            String rbm2WeightsPath = "D:\\StromaSet\\weights\\RBM2_TOP_T3_76_40_16_0,1688143.weights";

            int batchSize = 100;
            int patchWidth = 16;
            int patchHeight = 16;

            Random random = new Random();

            int rbm0Visible = patchWidth * patchHeight * 3 + 1;
            int rbm0Hidden = 500;

            int rbm1Visible = rbm0Hidden;
            int rbm1Hidden = 75;

            int rbm2Visible = rbm1Hidden + 1;
            int rbm2Hidden = 40;

            IBatchGenerator generator = new ScaleBatchGenerator(positiveSamplesPath, negativeSamplesPath);

            //Matrix<float> rbm0Weights = WeightsHelper.generateWeights(rbm0Visible, rbm0Hidden, random);
            Matrix<float> rbm0Weights = WeightsHelper.loadWeights(rbm0WeightsPath);
            //Matrix<float> rbm1Weights = WeightsHelper.generateWeights(rbm1Visible, rbm1Hidden, random);
            Matrix<float> rbm1Weights = WeightsHelper.loadWeights(rbm1WeightsPath);
            //Matrix<float> rbm2Weights = WeightsHelper.generateWeights(rbm2Visible, rbm2Hidden, random);
            Matrix<float> rbm2Weights = WeightsHelper.loadWeights(rbm2WeightsPath);

            RBM rbm0 = new RBM(rbm0Weights, false);
            RBM rbm1 = new RBM(rbm1Weights, false);
            RBM rbm2 = new RBM(rbm2Weights, false);

            //RBMTrainer.IRBMInput rbm0Input = new RBM0Input(generator, batchSize, patchWidth, patchHeight);
            //RBMTrainer.trainRBM(rbm0, rbm0Input, 0.01f, 100000, 100, rbmSavePath, "RBM0_LABEL_T1", rbm0Visible, rbm0Hidden);

            //RBMTrainer.IRBMInput rbm1Input = new RBM1Input(generator, batchSize, patchWidth, patchHeight, rbm0);
            //RBMTrainer.trainRBM(rbm1, rbm1Input, 0.01f, 2000000, 1000, rbmSavePath, "RBM1_LABELS_T2", rbm1Visible, rbm1Hidden);

            RBMTrainer.IRBMInput rbm2Input = new RBM2Input(generator, batchSize, patchWidth, patchHeight, rbm0, rbm1);
            RBMTrainer.trainRBM(rbm2, rbm2Input, 0.03f, 1000000, 1000, rbmSavePath, "RBM2_TOP_T3", rbm2Visible, rbm2Hidden);
        }
Ejemplo n.º 2
0
        static void Main(string[] args)
        {
            String positiveSamplesPath = "D:\\StromaSet\\S-114-HE_64\\crossvalidation\\stroma";
            String negativeSamplesPath = "D:\\StromaSet\\S-114-HE_64\\crossvalidation\\not-stroma";
            String outputPath = "D:\\StromaSet\\reconstructions";

            String rbm0WeightsPath = "D:\\StromaSet\\weights\\RBM0_T1_769_500_139_0,04191353.weights";
            String rbm1WeightsPath = "D:\\StromaSet\\weights\\RBM1_T1_500_75_375_0,07180008.weights";
            String rbm2WeightsPath = "D:\\StromaSet\\weights\\RBM2_TOP_T3_76_40_16_0,1688143.weights";

            int batchSize = 100;
            int patchWidth = 16;
            int patchHeight = 16;

            IBatchGenerator generator = new ScaleBatchGenerator(positiveSamplesPath, negativeSamplesPath);

            Matrix<float> rbm0Weights = WeightsHelper.loadWeights(rbm0WeightsPath);
            Matrix<float> rbm1Weights = WeightsHelper.loadWeights(rbm1WeightsPath);
            Matrix<float> rbm2Weights = WeightsHelper.loadWeights(rbm2WeightsPath);

            RBM rbm0 = new RBM(rbm0Weights, false);
            RBM rbm1 = new RBM(rbm1Weights, false);
            RBM rbm2 = new RBM(rbm2Weights, false);

            Matrix<float> batch = generator.nextBatch(batchSize, patchWidth, patchHeight);

            Matrix<float> rbm0Hidden = rbm0.getHidden(batch);
            Matrix<float> rbm1Hidden = rbm1.getHidden(rbm0Hidden);
            Matrix<float> rbm1HiddenWithEmptyLabels = MatrixHelper.addEmptyLabels(rbm1Hidden);
            Matrix<float> rbm2Hidden = rbm2.getHidden(rbm1HiddenWithEmptyLabels);

            Matrix<float> rbm2Visible = rbm2.getVisible(rbm2Hidden);
            Matrix<float> rbm2VisibleWithoutLabels = MatrixHelper.removeLabels(rbm2Visible);
            Matrix<float> rbm1Visible = rbm1.getVisible(rbm2VisibleWithoutLabels);
            Matrix<float> rbm0Visible = rbm0.getVisible(rbm1Visible);

            ImageHelper.persistOriginalAndReconstruction(patchWidth, patchHeight, batch, rbm0Visible, outputPath);

            Console.WriteLine("Image Reconstruction: " + RBMTrainer.reconstructionError(batch, rbm0Visible));
            Console.WriteLine("Prediction Quality: " + RBMTrainer.predictionQuality(rbm2Visible));

            Console.WriteLine("press key to exit: ");
            Console.ReadKey();
        }
Ejemplo n.º 3
0
        public static void trainRBM(RBM rbm, IRBMInput input, float learningRate, int epochs, int saveInterval, String saveDir, String trainingName, int visibleLayer, int hiddenLayer)
        {
            input.generateInput();
            Matrix<float> currentInput = input.getInput();

            float minError = float.MaxValue;
            Matrix<float> minWeights = null;
            float error = float.MaxValue;

            int repeat = epochs / saveInterval;
            for (int i = 0; i < repeat; ++i)
            {
                for (int j = 0; j < saveInterval; ++j)
                {
                    Thread thread = new Thread(input.generateInput);
                    thread.Start();

                    error = rbm.train(currentInput, learningRate);
                    Console.WriteLine(trainingName + "; Epoche: " + (i * saveInterval + j) +  "; Error: " + error);

                    if (error < minError)
                    {
                        minError = error;
                        minWeights = rbm.getWeights();
                    }

                    thread.Join();
                    currentInput = input.getInput();
                }

                // save best weights from last interval
                String outputFile = saveDir + "\\" + trainingName + "_" + visibleLayer + "_" + hiddenLayer + "_" + i + "_" + minError + ".weights";
                WeightsHelper.saveWeights(minWeights, outputFile);
                minError = float.MaxValue;
                Console.WriteLine("weights saved");
            }
        }
Ejemplo n.º 4
0
 public RBM2Input(IBatchGenerator generator, int batchSize, int patchWidth, int patchHeight, RBM rbm0, RBM rbm1)
 {
     this.generator = generator;
     this.batchSize = batchSize;
     this.patchHeight = patchWidth;
     this.patchWidth = patchWidth;
     this.rbm0 = rbm0;
     this.rbm1 = rbm1;
 }
Ejemplo n.º 5
0
        static void Main(string[] args)
        {
            InOut io = new InOut(args);

            RBM rbm0 = new RBM(io.getRBM0Weights(), false);
            RBM rbm1 = new RBM(io.getRBM1Weights(), false);
            RBM rbm2 = new RBM(io.getRBM2Weights(), false);

            LinkedList<ParseObject> objects = io.getParseObjects();

            foreach (ParseObject o in objects)
            {
                classifyImage(o, rbm0, rbm1, rbm2);
            }

            io.writeOuput();
        }
Ejemplo n.º 6
0
        private static void classifyImage(ParseObject o, RBM rbm0, RBM rbm1, RBM rbm2)
        {
            Bitmap image = o.getImage();
            LinkedList<float[]> scaledPatches = new LinkedList<float[]>();

            int classWhite = 0;
            int classStroma = 0;
            int classNotStroma = 0;

            for (int y = 0; y < image.Height - patchHeight; y += scanIncrement)
            {
                for (int x = 0; x < image.Width - patchWidth; x += scanIncrement)
                {
                    Bitmap subImage = image.Clone(new Rectangle(x, y, patchWidth, patchHeight), image.PixelFormat);
                    float[] scaledPatch = ImageHelper.generateScaledPatch(subImage, scaleWidth, scaleHeight, whiteThreshold);
                    if (scaledPatch == null)
                    {
                        ++classWhite;
                        continue;
                    }

                    scaledPatches.AddLast(scaledPatch);
                }
            }

            if (scaledPatches.Count > 0) {

                int columnCount = scaleWidth * scaleHeight * 3 + 1;
                Matrix<float> batch = Matrix<float>.Build.Dense(scaledPatches.Count, columnCount);

                int row = 0;
                foreach (float[] scaledPatch in scaledPatches)
                {
                    batch.SetRow(row++, scaledPatch);
                }

                Matrix<float> rbm0Hidden = rbm0.getHidden(batch);
                Matrix<float> rbm1Hidden = rbm1.getHidden(rbm0Hidden);
                Matrix<float> rbm1HiddenWithEmptyLabels = MatrixHelper.addEmptyLabels(rbm1Hidden);
                Matrix<float> rbm2Hidden = rbm2.getHidden(rbm1HiddenWithEmptyLabels);

                Matrix<float> rbm2Visible = rbm2.getVisible(rbm2Hidden);

                int lastColumn = rbm2Visible.ColumnCount - 1;

                for (int i = 0; i < rbm2Visible.RowCount; ++i)
                {
                    if (rbm2Visible.At(i, lastColumn) > 0.5f) ++classStroma;
                    else ++classNotStroma;
                }

            }

            float stroma = classStroma / (float)(classNotStroma + classWhite + classStroma);
            Boolean isStroma = stroma > classificationThreshold;

            Console.WriteLine("Is Stroma: " + isStroma + ", " + stroma);
            Console.WriteLine("Stroma: " + classStroma + ", NotStroma: " + classNotStroma + ", White: " + classWhite);

            o.setStroma(isStroma);
            o.setStromaRatio(stroma);
        }