Ejemplo n.º 1
0
 internal FormDataView(DataTable table, MachineLearning.SchemeSumPredictions sumPredictionScheme)
 {
     InitializeComponent();
     this._table = table;
     // this._availableVisualizations = new List<VisualizationType> { Visuali}
     generateView();
 }
Ejemplo n.º 2
0
        private String getExportString(String delimiter, String note, VotingScheme votingScheme)
        {
            StringBuilder s = new StringBuilder();

            String featureModel = this._featureModel;
            String kernel       = _cMode.ToString();

            if (_svmConfig != null)
            {
                kernel = this._svmConfig.Kernel.ToString();
            }

            ConfusionMatrix cm = null;
            ReceiverOperatingCharacteristic roc = null;

            SchemeSumPredictions sumPredictions = null;
            SchemeMajorityVote   majorityVote   = null;

            switch (votingScheme)
            {
            case VotingScheme.NONE:
            {
                cm  = _voter.AggregatedConfusionMatrix;
                roc = _voter.getROC();
                break;
            }

            case VotingScheme.ADDITIVE_PREDICTIONS:
            {
                sumPredictions = _voter.getSumPredictions();
                cm             = null;
                roc            = sumPredictions.getROC();
                break;
            }

            case VotingScheme.MAJORITY_VOTE:
            {
                majorityVote = _voter.getMajorityVote();
                cm           = null;
                roc          = majorityVote.getROC();
                break;
            }
            }

            if (votingScheme == VotingScheme.NONE && roc != null && cm != null)
            {
                roc.Compute(100);
                s.Append(featureModel + delimiter);
                s.Append(votingScheme + delimiter);
                s.Append(kernel + delimiter);
                s.Append(note + delimiter);
                s.Append(this._numRuns + delimiter);
                s.Append(this._numFolds + delimiter);
                s.Append(this._timeElapsedMS + delimiter);
                s.Append(this._memoryUsedBytes + delimiter);
                s.Append(Utility.formatNumber(Utility.BytesToGB(this._memoryUsedBytes)) + delimiter);
                s.Append(cm.Samples + delimiter);
                s.Append(Utility.formatNumber(roc.Area) + delimiter);
                s.Append(Utility.formatNumber(cm.Sensitivity) + delimiter);
                s.Append(Utility.formatNumber(cm.Specificity) + delimiter);
                s.Append(Utility.formatNumber(cm.FalsePositiveRate) + delimiter);
                s.Append(Utility.formatNumber(cm.FalseDiscoveryRate) + delimiter);
                s.Append(Utility.formatNumber(cm.Accuracy) + delimiter);
                s.Append(Utility.formatNumber(cm.PositivePredictiveValue) + delimiter);
                s.Append(Utility.formatNumber(cm.Precision) + delimiter);
                s.Append(Utility.formatNumber(cm.Recall) + delimiter);
                s.Append(Utility.formatNumber(cm.FScore) + delimiter);
                s.Append(cm.ActualPositives + delimiter);
                s.Append(cm.ActualNegatives + delimiter);
                s.Append(cm.TruePositives + delimiter);
                s.Append(cm.TrueNegatives + delimiter);
                s.Append(cm.FalsePositives + delimiter);
                s.Append(cm.FalseNegatives);
            }

            else if (votingScheme == VotingScheme.ADDITIVE_PREDICTIONS && sumPredictions != null && roc != null)
            {
                roc.Compute(100);
                s.Append(featureModel + delimiter);
                s.Append(votingScheme + delimiter);
                s.Append(kernel + delimiter);
                s.Append(note + delimiter);
                s.Append(this._numRuns + delimiter);
                s.Append(this._numFolds + delimiter);
                s.Append(this._timeElapsedMS + delimiter);
                s.Append(this._memoryUsedBytes + delimiter);
                s.Append(Utility.formatNumber(Utility.BytesToGB(this._memoryUsedBytes)) + delimiter);
                s.Append(sumPredictions.NumSamples + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.ROCAreaVoter) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.Sensitivity) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.Specificity) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.FalsePositiveRate) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.FalseDiscoveryRate) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.Accuracy) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.PositivePredictiveValue) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.Precision) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.Recall) + delimiter);
                s.Append(Utility.formatNumber(sumPredictions.FScore) + delimiter);
                s.Append(sumPredictions.ActualPositives + delimiter);
                s.Append(sumPredictions.ActualNegatives + delimiter);
                s.Append(sumPredictions.TruePositives + delimiter);
                s.Append(sumPredictions.TrueNegatives + delimiter);
                s.Append(sumPredictions.FalsePositives + delimiter);
                s.Append(sumPredictions.FalseNegatives);
            }

            else if (votingScheme == VotingScheme.MAJORITY_VOTE && majorityVote != null && roc != null)
            {
                roc.Compute(100);
                s.Append(featureModel + delimiter);
                s.Append(votingScheme + delimiter);
                s.Append(kernel + delimiter);
                s.Append(note + delimiter);
                s.Append(this._numRuns + delimiter);
                s.Append(this._numFolds + delimiter);
                s.Append(this._timeElapsedMS + delimiter);
                s.Append(this._memoryUsedBytes + delimiter);
                s.Append(Utility.formatNumber(Utility.BytesToGB(this._memoryUsedBytes)) + delimiter);
                s.Append(majorityVote.NumSamples + delimiter);
                s.Append(Utility.formatNumber(majorityVote.ROCAreaVoter) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.Sensitivity) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.Specificity) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.FalsePositiveRate) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.FalseDiscoveryRate) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.Accuracy) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.PositivePredictiveValue) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.Precision) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.Recall) + delimiter);
                s.Append(Utility.formatNumber(majorityVote.FScore) + delimiter);
                s.Append(majorityVote.ActualPositives + delimiter);
                s.Append(majorityVote.ActualNegatives + delimiter);
                s.Append(majorityVote.TruePositives + delimiter);
                s.Append(majorityVote.TrueNegatives + delimiter);
                s.Append(majorityVote.FalsePositives + delimiter);
                s.Append(majorityVote.FalseNegatives);
            }

            return(s.ToString());
        }
Ejemplo n.º 3
0
        internal SchemeSumPredictions getSumPredictions()
        {
            SchemeSumPredictions scheme = new SchemeSumPredictions(_totalClassification);

            return(scheme);
        }