private static void PredictIssue() 
 {
     ITransformer loadedModel = _mLContext.Model.Load(_modelPath, out var modelInputSchema);
     Sentiment_Analysis singlesentiment = new Sentiment_Analysis() { Phrase = "" };
     _predEngine = _mLContext.Model.CreatePredictionEngine<Sentiment_Analysis, Sentiments>(loadedModel);
     var prediction = _predEngine.Predict(singlesentiment);
     Console.WriteLine($"{prediction.Sentiment}");
 }
        public static IEstimator<ITransformer> BuildAndTrainModel(IDataView trainingDataView, IEstimator<ITransformer> pipeline) 
        {
            var trainingPipline = pipeline.Append(_mLContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Features"))
                .Append(_mLContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));
            _trainedmodel = trainingPipline.Fit(trainingDataView);

            _predEngine = _mLContext.Model.CreatePredictionEngine<Sentiment_Analysis, Sentiments>(_trainedmodel);
            Sentiment_Analysis se = new Sentiment_Analysis()
            {

                Phrase = //"This terms candidates are very normal"
                "This website sucks"
            };
            var prediction = _predEngine.Predict(se);
            Console.WriteLine($"single line prediction { prediction.Sentiment}");
            return trainingPipline;
        }