Ejemplo n.º 1
0
        /// <summary>
        /// creates learning curve after learning+deciding about given precentage of pictures according to percent[]
        /// </summary>
        /// <param name="folderAll">folder of all images</param>
        /// <param name="folderTrue">folder of true images</param>
        /// <param name="learn">data learning object for learning</param>
        /// <param name="decide">decision making object for deciding</param>
        /// <param name="percent">percentages to use for learning (percent.length is number of points in learning curve)</param>
        /// <returns>true if succeeded creating the curve</returns>
        public static CurvePoint[] LearningCurve(string folderAll, string folderTrue, DataLearning learning, DecisionMaking deciding, int[] percent, out double[] simpleAlgo,
            Testing.HandleIdenticalMethod identical, bool excludeTrainingSet)
        {
            _progress = 0;
            int itrCount=0;
            simpleAlgo = new double[3];
            //randomLearningCurve = null;
            const int ITERATIONS_PER_POINT = 5;

            // Make All, True & False files lists
            List<string> allFiles, falseFiles, trueFiles;
            try
            {
                allFiles = LoadImages(folderAll).ToList();
                trueFiles = LoadImages(folderTrue).ToList();
                falseFiles = SubstractListsByFileName(allFiles, trueFiles);
                trueFiles = SubstractListsByFileName(allFiles, falseFiles);  // In order for the path to be via 'allFiles' folder
            }
            catch (Exception exc)
            {
                MessageBox.Show(exc.Message);
                return null;
            }

            // Handle duplicates
            ProgressString = "Checking for identicals with different choise";
            HandleIdenticalVectorWithDifferentChoise(ref allFiles, ref trueFiles, ref falseFiles, learning.Repository, identical);

            //create curve of percent.length number of points
            ProgressString = "Calculating Curves";
            CurvePoint[] learningCurve = new CurvePoint[percent.Length];            //for main graph
            //randomLearningCurve = new CurvePoint[percent.Length];      //for random algorithm graph
            for (int k = 0; k < percent.Length; k++)
            {
                learningCurve[k] = new CurvePoint(percent[k]);
               // randomLearningCurve[k] = new CurvePoint(percent[k]);
                for (int itr = 0; itr < ITERATIONS_PER_POINT; itr++)
                {
                    //get wanted amount of randome images
                    List<string> chosenFiles;
                    do chosenFiles = getRandomImages(allFiles, percent[k]);
                    while (SubstractListsByFileName(chosenFiles, trueFiles).Count == 0 || SubstractListsByFileName(chosenFiles, falseFiles).Count == 0); // incase only true or only false was chosen

                    //get new lists of true and false files (Used for learning in current curve point)
                    List<string> subsetTrueFiles = SubstractListsByFileName(chosenFiles, falseFiles);
                    List<string> subsetFalseFiles = SubstractListsByFileName(chosenFiles, trueFiles);

                    //-------------------------------------
                    //learn from subsets
                    learning.LearnForTesting(chosenFiles, subsetTrueFiles);

                    //-------------------------------------
                    //decide for all files
                    double[] results;
                    deciding.DecideForTesting(allFiles, learning.Repository, out results);

                    //-------------------------------------
                    //make true and false lists according to results
                    List<string> resultsTrue = new List<string>();
                    List<string> resultsFalse = new List<string>();
                    for (int i = 0; i < results.Length; i++)
                        if (results[i]>0) //*******here deside for testing*******/
                            resultsTrue.Add(allFiles[i]);
                        else
                            resultsFalse.Add(allFiles[i]);

                    //-------------------------------------
                    //calculate success precentage
                    CurvePoint.SingleCurvePointCalc currentIteration = new CurvePoint.SingleCurvePointCalc(trueFiles, falseFiles, subsetTrueFiles, subsetFalseFiles, resultsTrue, resultsFalse, excludeTrainingSet);
                    learningCurve[k].AddSingleCurvePointCalc(currentIteration);

                    //-------------------------------------
                    //get simple algorithms calculations
                     double simpleFalseNegative,
                           simpleFalsePositive,
                           simpleSuccess;
                     Testing.SimpleAlgorithm.CalcStatisticalAlgorithm(allFiles.Count, trueFiles.Count, out simpleSuccess, out simpleFalseNegative, out simpleFalsePositive);
                    simpleAlgo[0] = simpleSuccess*100;
                    simpleAlgo[1] = simpleFalseNegative * 100;
                    simpleAlgo[2] = simpleFalsePositive * 100;

                    // Update progress indicators
                    itrCount++;
                    _progress = (int)((itrCount * 100)/(ITERATIONS_PER_POINT * percent.Length));
                }
            }

            ProgressString = "Done Calculating Curves";
            return learningCurve;
        }
Ejemplo n.º 2
0
        private void threadCalcLearningCurve()
        {
            // Make Learning & Deciding objects
            const string USERNAME = "******";

             DataLearning learning;
             if (_rdoKNN.Checked)
             {
                 //K = int.Parse(_txtK.Text);
                 K = 1;
                 learning = new DataLearning(USERNAME, LearningAlgorithm.Algorithm.KNN, ParamDictionary, K);
             }
             else if (_rdoTree.Checked)
             {
                 K = 0;
                 learning = new DataLearning(USERNAME, LearningAlgorithm.Algorithm.DecisionTree, ParamDictionary, K);
             }
             else // if (_rdoTreeNum.Checked)
             {
                 K = 0;
                 learning = new DataLearning(USERNAME, LearningAlgorithm.Algorithm.DecisionTreeNumerical, ParamDictionary, K);
             }

             DecisionMaking deciding = new DecisionMaking(USERNAME, learning.Algorithm, ParamDictionary);

            // Load vectors to repository
            learning.Repository.loadList();

            // Scan pictures
            Testing.scanPicturesIntoReporistory(txtFolderAllTesting3.Text, txtFolderTrueTesting3.Text, learning.Repository, ParamDictionary);

            // Set X-Axis points for learning curve
            int nPoints = Convert.ToInt16(txtNumOfPointsTesting3.Text);
            int[] percent = new int[nPoints];
            for (int i = 0; i < nPoints; i++)
                if (!chkExclude.Checked)
                    percent[i] = (int)(((i + 1) * 100) / (nPoints));
                else
                    percent[i] = (int)(((i + 1) * 100) / (nPoints+1));

            // Set method for handeling identical vectors with different choice
            double[] simpleAlgorithm = new double[3];

            // Set method for handeling identical vectors with different choice
            Testing.HandleIdenticalMethod identicalMethod = Testing.HandleIdenticalMethod.Ignore;
            if (rdoSameRemove.Checked)
                identicalMethod = Testing.HandleIdenticalMethod.Remove;

            // Set if training set should be excluded from testing set
            _excludeTrainingSet = chkExclude.Checked;

            // Calc learning curves

            _learningCurve = Testing.LearningCurve(txtFolderAllTesting3.Text, txtFolderTrueTesting3.Text, learning, deciding, percent, out simpleAlgorithm, identicalMethod, _excludeTrainingSet);
            _statisticAlgoCurve = simpleAlgorithm;
            _trdTest.Abort();
        }
Ejemplo n.º 3
0
        private void _btnUser_Click(object sender, EventArgs e)
        {
            if (User.Equals("") || _lstParameters.CheckedItems.Count == 0)
                MessageBox.Show("Fill User, Learning Algorithm and Parameter fields");
            else
            {
                //check if user already exists
                Boolean isNewUser = true;
                if (Directory.Exists(User + "'sVectorData"))
                {
                    String[] files = Directory.GetFiles(User + "'sVectorData");
                    //if empty directory
                    if (files.Length != 0)
                        isNewUser = false;
                    else
                    {
                        //check if files (only 2 vector files) have data in them
                        foreach (string file in files)
                        {
                            Stream s = File.Open(file, FileMode.Open);
                            if (s.Length == 0)
                            {
                                isNewUser = true;
                                s.Close();
                                break;
                            }
                            s.Close();
                        }
                    }

                }
                K = 1;
                _data = new DataLearning(User, SelectedAlgorithm, ParametersDictionary, K);
                if (SelectedAlgorithm == LearningAlgorithm.Algorithm.KNN)
                {
                    _knn = new KNN(K, _data.Repository);

                    _btnBrowsePredict.Enabled = true;
                    //_btnPredict.Enabled = true;

                }
                /*if (_rdoKNNweight.Checked)
                    _btnPredictUser.Enabled = true;*/
                //else
                //{
                //    _tree = new DecisionTree();
                //}

                //if user exists: loads repository and algorithm. and enables to train or predict.
                if (!isNewUser)
                {
                    if (!(SelectedAlgorithm == LearningAlgorithm.Algorithm.KNN))
                    {
                        _data.Algorithm.LoadData(User);

                    }
                    _data.Repository.loadList();
                    _btnBrowsePredict.Enabled = true;
                    //_btnPredict.Enabled = true;

                }
                //if doesn't exist: enables only to train. files will be created
                _btnBrowseAll.Enabled = true;
                _btnBrowseTrue.Enabled = true;
                //_btnTrain.Enabled = true;

            }
        }