private void button1_Click(object sender, EventArgs e)
        {
            // 记录当前时间
            int count_predit = 0;
            DateTime dt_1 = DateTime.Now;
            Rec_Items_num = int.Parse( this.textBox9.Text );
            userRating = new Dictionary<int, float>();

            // 得到用户
            cUser testUser = testUsers[comboBox2.SelectedIndex + 1];

            userid = testUser.id;

            userRating = new Dictionary<int, float>();

            for (int j = 1; j < trainUsers[userid].Ratings.Length; j++)
            {
                if (trainUsers[userid].Ratings[j] != 0)
                {
                    userRating.Add(j, (float)trainUsers[userid].Ratings[j]);
                }
            }
            //    count_predit = trainUsers[userID].Ratings.Length - trainUsers[userID].RatingNums;

            // 得到该用户的预测评分
            IDictionary<int, float> Predictions = obj_SlopeOne.Predict(userRating);
            obj_AssStrategy = obj_SlopeOne.getAssStrategy(userid, Predictions, Rec_Items_num, testUser);

            DateTime dt_2 = DateTime.Now;
            TimeSpan ts = dt_2.Subtract(dt_1);

            this.textBox4.Text = obj_AssStrategy.MAE.ToString();        // MAE
            this.textBox5.Text = ts.TotalMilliseconds + "ms";           // 时间
            this.textBox6.Text = obj_AssStrategy.Precison.ToString();   // 查准率
            this.textBox8.Text = obj_AssStrategy.Recall.ToString();     // 查全率
            float F = obj_AssStrategy.calculateF_Measure();             // F1指标
            this.textBox7.Text = F.ToString();
            this.textBox2.Text = this.Rec_Items_num.ToString();         // Top-N 推荐数

            this.textBox3.Text = "MAE:" + obj_AssStrategy.MAE + " 查准率:" + obj_AssStrategy.Precison + " 查全率:" +
                obj_AssStrategy.Recall + " F值:" + F + " 总耗时:" + ts.TotalMilliseconds + "ms";
               //     this.dataGridView1.Rows.Add(count_dgv++, trainUsers[userIndex].id, this.Rec_Items_num, trainUsers[userIndex].RatingNums, obj_AssStrategy.MAE, obj_AssStrategy.Precison,
             //       obj_AssStrategy.Recall, F, ts.TotalMilliseconds + " ms");
            Application.DoEvents();

            stat_Info[trainUsers[userid].RatingNums / 50] += obj_AssStrategy.MAE;
            count_Num[trainUsers[userid].RatingNums / 50]++;
            // 累加相关数据
            total_MAE += obj_AssStrategy.MAE;
            total_Precison += obj_AssStrategy.Precison;
            total_Recall += obj_AssStrategy.Recall;
            total_F_Measure += F;
            total_Time += ts.TotalMilliseconds;
        }
        private void button1_Click(object sender, EventArgs e)
        {
            DateTime dt_1 = DateTime.Now;
            this.Rec_Items_num = int.Parse(this.textBox13.Text);    // Top-N推荐个数

            this.progressBar1.Maximum = (this.comboBox2.SelectedIndex + 15) * 10 + 5;
            this.progressBar1.Value = 0;
            // 读入数据,生成UI矩阵
            this.textBox3.Text = "开始读入数据";
            this.progressBar1.Value++;

            Application.DoEvents();

            cReadinData obj_ReadData = new cReadinData(comboBox1.SelectedIndex);

            this.textBox3.Text = "读入数据完成   训练数据:" + obj_ReadData.sTrainFileName[comboBox1.SelectedIndex]
                + "     测试数据:" + obj_ReadData.testfileName[comboBox1.SelectedIndex];
            this.progressBar1.Value += 2;

            Application.DoEvents();

            // 读取最近邻居个数
            int number = int.Parse(textBox2.Text);
            this.neigh_num = number;

            // 相似度算法的选择
            if(this.radioButton1.Checked)
            {
                sim_alg = 1;
            }
            else if(this.radioButton2.Checked)
            {
                sim_alg = 2;
            }
            else if(this.radioButton3.Checked)
            {
                sim_alg = 3;
            }

            // 测试用户数目,最少为15
            testUserNum = this.comboBox2.SelectedIndex + 15;

            cUserBased_CF obj_UserBased_CF = new cUserBased_CF(this.neigh_num);
            cUser[] testUsers = cReadinData.getTestUser();

            this.textBox3.Text = "初始化完成 相似度算法:" + sim_alg.ToString() +
                " 最近邻居个数:" + this.neigh_num.ToString() + " 测试用户数:" + testUserNum.ToString();
            this.progressBar1.Value += 2;
            Application.DoEvents();

            double MAE_1, Precison, Recall, F_Measure;
            double total_MAE = 0, total_Precison = 0, total_Recall = 0, total_F_Measure = 0;
            double average_MAE, average_Precison, average_Recall, average_F_Measure;

            for (int i = 1; i <= this.testUserNum; i++)
            {
                this.progressBar1.Value += 5;
                obj_AssStrategy = obj_UserBased_CF.getPredictRating(testUsers[i], this.sim_alg, Rec_Items_num);

                // 取得各项算法评价指标
                MAE_1 = obj_AssStrategy.MAE;
                Precison = obj_AssStrategy.Precison;
                Recall = obj_AssStrategy.Recall;
                F_Measure = obj_AssStrategy.calculateF_Measure();

                // 累计各项指标的和
                total_MAE += MAE_1;
                total_Precison += Precison;
                total_Recall += Recall;
                total_F_Measure += F_Measure;

                this.textBox3.Text = "第 " + i.ToString() + " 个用户计算完成.";

                this.progressBar1.Value += 5;
                Application.DoEvents();
            }
            // 计算各个评价准则的平均值
            average_MAE = total_MAE / this.testUserNum;
            average_Precison = total_Precison / this.testUserNum;
            average_Recall = total_Recall / this.testUserNum;
            average_F_Measure = total_F_Measure / this.testUserNum;

            DateTime dt_2 = DateTime.Now;
            TimeSpan ts = dt_2.Subtract(dt_1);

            this.textBox3.Text = "所有用户计算完成   总耗时:" + ts.TotalMilliseconds + " ms";
            Application.DoEvents();

            this.textBox4.Text = average_MAE.ToString();
            this.textBox5.Text = ts.TotalMilliseconds + " ms";
            this.textBox6.Text = this.sSimAlg[this.sim_alg - 1];
            this.textBox7.Text = this.neigh_num.ToString();
            this.textBox9.Text = average_Precison.ToString();
            this.textBox10.Text = average_Recall.ToString();
            this.textBox11.Text = average_F_Measure.ToString();
            this.textBox12.Text = "20";

            this.dataGridView1.Rows.Add(count_dgv++, sSimAlg[sim_alg - 1],  this.neigh_num, this.Rec_Items_num,average_MAE,
                average_Precison, average_Recall, average_F_Measure, ( ts.TotalMilliseconds / this.testUserNum) + " ms" );
        }
        // 开始运行
        private void button5_Click(object sender, EventArgs e)
        {
            int test_num = this.comboBox1.SelectedIndex + 15;    // 测试用户数量
            int N = int.Parse(this.textBox11.Text);              // 推荐数目
            cUser curTestUser;                                   // 当前测试用户
            cAssStrategy obj_AssStrategy = new cAssStrategy();   // 评价准则与指标

            this.textBox7.Text = "测试用户数:" + test_num.ToString()
                + "  Top-N 推荐数:" + N;
            this.progressBar1.Maximum = (test_num-1) * 3; ;          // 进度条最大值
            this.progressBar1.Value = 0;

            //////////////////////////////////////////////////////////////////////////
            double total_N = 0, total_Precison = 0, total_Recall = 0, total_F = 0, total_Time = 0;
            double Precison, Recall, F_Measure, Time;
            DateTime dt_1, dt_2;
            TimeSpan ts;
            int real_RecNum = N;

            // 对测试集中的用户开始产生推荐
            int userid;
            for (int i = 0; i < test_num-1; i++)
            {
                curTestUser = testUsers[i + 1];
                userid = curTestUser.id;

                dt_1 = DateTime.Now;                    // 获取当前时间
                // 得到ID为userid的用户所支持的关联规则集合
                supp_AssRules[userid] = cApriori.getSupport_AssRules(userid);
                this.textBox7.Text = "第 " + (i + 1) + " 个用户所支持的关联规则生成.";
                this.progressBar1.Value++;
                Application.DoEvents();

                // 得到推荐电影列表
                recItems[userid] = cApriori.getRecItems(supp_AssRules[userid], userid);

                real_RecNum = (recItems[userid].Length > N ? N : recItems[userid].Length);
                this.textBox7.Text = "第 " + (i + 1) + " 个用户的推荐列表生成.";
                this.progressBar1.Value++;
                Application.DoEvents();

                // 评价准则与指标的计算
                obj_AssStrategy = cApriori.getAssStrategy(curTestUser, N);

                dt_2 = DateTime.Now;
                ts = dt_2.Subtract(dt_1);                              // 时间间隔
                Time = ts.TotalMilliseconds;

                Precison = obj_AssStrategy.Precison;
                Recall = obj_AssStrategy.Recall;
                F_Measure = obj_AssStrategy.calculateF_Measure();

               //     this.label22.Text = userid.ToString();                 // 用户ID

            //    this.label35.Text = real_RecNum.ToString();        // 实际推荐数目
                total_N += real_RecNum;

                this.label20.Text = Precison.ToString();     // 查准率
                total_Precison += Precison;

                this.label23.Text = Recall.ToString();       // 查全率
                total_Recall += Recall;

                this.label24.Text = F_Measure.ToString();  // F值
                total_F += F_Measure;

                this.label37.Text = Time + " ms";           // 算法运行时间
                total_Time += Time;

                this.textBox7.Text = "完成第 " + (i + 1) + " 个用户的结果分析.";
                this.progressBar1.Value++;
                Application.DoEvents();
            }
            // 计算平均值
            int num = test_num - 1;
            double average_N = ((double)total_N / (double)num);
            double average_Precison = (double) ( (double)total_Precison / num );
            double average_Recall = (double) ( (double)total_Recall / num );
            double average_F = (double) ( (double)total_F / num );
            double average_Time = (double)total_Time / num;

            this.label29.Text = average_N.ToString();
            this.label30.Text = average_Precison.ToString();
            this.label31.Text = average_Recall.ToString();
            this.label32.Text = average_F.ToString();
            this.label33.Text = average_Time.ToString() + " ms";
            Application.DoEvents();
        }