Ejemplo n.º 1
0
        /**
         * <summary>Recursive method for computing the obstacle neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which obstacle neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private void queryObstacleTreeRecursive(Agent agent, KInt rangeSq, ObstacleTreeNode node)
        {
            if (node != null)
            {
                Obstacle obstacle1 = node.obstacle_;
                Obstacle obstacle2 = obstacle1.next_;

                KInt agentLeftOfLine = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, agent.position_);

                queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0 ? node.left_ : node.right_);
                if (RVOMath.absSq(obstacle2.point_ - obstacle1.point_) == 0)
                {
                    return;
                }

                KInt distSqLine = RVOMath.sqr(agentLeftOfLine) / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

                if (distSqLine < rangeSq)
                {
                    if (agentLeftOfLine < 0)
                    {
                        /*
                         * Try obstacle at this node only if agent is on right side of
                         * obstacle (and can see obstacle).
                         */
                        agent.insertObstacleNeighbor(node.obstacle_, rangeSq);
                    }

                    /* Try other side of line. */
                    queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0 ? node.right_ : node.left_);
                }
            }
        }
        public Vector2 GetVelocityCollisionFree(Vector2 currentlocation, Vector2 currentVelocity) //
        {
            IList <Agent> tmpAgents = getAgents();                                                //

            currentAgent = createAgent(robotId);

            if (tmpAgents.Count > 0)
            {
                float            rangeSq     = RVOMath.sqr(timeHorizonObst * maxSpeed + radius);
                IList <Obstacle> tmpObstacle = getObstacles(currentlocation, rangeSq);

                currentAgent.position_     = currentlocation; //
                currentAgent.prefVelocity_ = currentVelocity; //

                kdTree_ = new KdTree();
                kdTree_.buildAgentTree(tmpAgents);

                currentAgent.computeNeighbors(kdTree_, tmpObstacle); //
                currentAgent.computeNewVelocity();                   //

                return(currentAgent.newVelocity_);                   //
            }
            else
            {
                return(new Vector2(0, 0));
            }
        }
        private IList <Obstacle> getObstacles(Vector2 currentlocation, float rangeSq)
        {
            List <Obstacle> temp = new List <Obstacle>();

            for (int i = 0; i < walls.Count; i++)

            {
                Obstacle obstacle1 = walls[i];
                Obstacle obstacle2 = obstacle1.next_;

                float agentLeftOfLine = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, currentlocation);


                float distSqLine = RVOMath.sqr(agentLeftOfLine) / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

                if (distSqLine < rangeSq)
                {
                    if (agentLeftOfLine < 0.0f)
                    {
                        temp.Add(walls[i]);
                    }
                }
            }

            return(temp);
        }
Ejemplo n.º 4
0
        /**
         * <summary>Computes the neighbors of this agent.</summary>
         */
        internal void computeNeighbors()
        {
            obstacleNeighbors_.Clear();
            KInt rangeSq = RVOMath.sqr(timeHorizonObst_ * maxSpeed_ + radius_);

            Simulator.Instance.kdTree_.computeObstacleNeighbors(this, rangeSq);
            agentNeighbors_.Clear();

            if (maxNeighbors_ > 0)
            {
                rangeSq = RVOMath.sqr(neighborDist_);
                Simulator.Instance.kdTree_.computeAgentNeighbors(this, ref rangeSq);
            }
        }
Ejemplo n.º 5
0
        private void queryAgentTreeRecursive(KInt2 position, ref KInt rangeSq, ref int agentNo, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    KInt distSq = RVOMath.absSq(position - agents_[i].position_);
                    if (distSq < rangeSq)
                    {
                        rangeSq = distSq;
                        agentNo = agents_[i].id_;
                    }
                }
            }
            else
            {
                KInt distSqLeft = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].minx, position.IntX)) + RVOMath.sqr(ReduceMax(position.IntX, agentTree_[agentTree_[node].left_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].miny, position.IntY)) + RVOMath.sqr(ReduceMax(position.IntY, agentTree_[agentTree_[node].left_].maxy));

                KInt distSqRight = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].minx, position.IntX)) + RVOMath.sqr(ReduceMax(position.IntX, agentTree_[agentTree_[node].right_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].miny, position.IntY)) + RVOMath.sqr(ReduceMax(position.IntY, agentTree_[agentTree_[node].right_].maxy));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
Ejemplo n.º 6
0
        /**
         * <summary>Computes the neighbors of this agent.</summary>
         */
        internal void computeNeighbors(KdTree kdTree_, IList <Obstacle> obstacles)
        {
            obstacleNeighbors_.Clear();
            agentNeighbors_.Clear();

            float rangeSq = RVOMath.sqr(timeHorizonObst_ * maxSpeed_ + radius_);

            foreach (var obstacle in obstacles)
            {
                insertObstacleNeighbor(obstacle, rangeSq); //mozliwy powod bledu ze wzgledu na rangeSq  // kdTree.computeObstacleNeighbors(this, rangeSq);
            }
            if (maxNeighbors_ > 0)
            {
                rangeSq = RVOMath.sqr(neighborDist_);

                kdTree_.computeAgentNeighbors(this, ref rangeSq);
                //  foreach (var agent in agents)
                //      insertAgentNeighbor(agent, ref rangeSq); //mozliwy powod bledu ze wzgledu na rangeSq // co z obstacle_next // kdTree.computeAgentNeighbors(this, ref rangeSq);
            }
        }
Ejemplo n.º 7
0
        /**
         * <summary>Recursive method for computing the agent neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which agent neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current agent k-D tree node index.</param>
         */
        private void queryAgentTreeRecursive(Agent agent, ref KInt rangeSq, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    agent.insertAgentNeighbor(agents_[i], ref rangeSq);
                }
            }
            else
            {
                KInt distSqLeft = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].minx, agent.position_.IntX)) + RVOMath.sqr(ReduceMax(agent.position_.IntX, agentTree_[agentTree_[node].left_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].miny, agent.position_.IntY)) + RVOMath.sqr(ReduceMax(agent.position_.IntY, agentTree_[agentTree_[node].left_].maxy));

                KInt distSqRight = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].minx, agent.position_.IntX)) + RVOMath.sqr(ReduceMax(agent.position_.IntX, agentTree_[agentTree_[node].right_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].miny, agent.position_.IntY)) + RVOMath.sqr(ReduceMax(agent.position_.IntY, agentTree_[agentTree_[node].right_].maxy));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
Ejemplo n.º 8
0
        /**
         * <summary>Recursive method for querying the visibility between two
         * points within a specified radius.</summary>
         *
         * <returns>True if q1 and q2 are mutually visible within the radius;
         * false otherwise.</returns>
         *
         * <param name="q1">The first point between which visibility is to be
         * tested.</param>
         * <param name="q2">The second point between which visibility is to be
         * tested.</param>
         * <param name="radius">The radius within which visibility is to be
         * tested.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private bool queryVisibilityRecursive(KInt2 q1, KInt2 q2, KInt radius, ObstacleTreeNode node)
        {
            if (node == null)
            {
                return(true);
            }

            Obstacle obstacle1 = node.obstacle_;
            Obstacle obstacle2 = obstacle1.next_;

            KInt q1LeftOfI = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, q1);
            KInt q2LeftOfI = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, q2);
            KInt LengthI   = RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

            // KInt invLengthI = 1.0f / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

            if (q1LeftOfI >= 0 && q2LeftOfI >= 0)
            {
                return(queryVisibilityRecursive(q1, q2, radius, node.left_) && ((RVOMath.sqr(q1LeftOfI) / LengthI >= RVOMath.sqr(radius) && RVOMath.sqr(q2LeftOfI) / LengthI >= RVOMath.sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node.right_)));
            }

            if (q1LeftOfI <= 0 && q2LeftOfI <= 0)
            {
                return(queryVisibilityRecursive(q1, q2, radius, node.right_) && ((RVOMath.sqr(q1LeftOfI) / LengthI >= RVOMath.sqr(radius) && RVOMath.sqr(q2LeftOfI) / LengthI >= RVOMath.sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node.left_)));
            }

            if (q1LeftOfI >= 0 && q2LeftOfI <= 0)
            {
                /* One can see through obstacle from left to right. */
                return(queryVisibilityRecursive(q1, q2, radius, node.left_) && queryVisibilityRecursive(q1, q2, radius, node.right_));
            }

            KInt point1LeftOfQ = RVOMath.leftOf(q1, q2, obstacle1.point_);
            KInt point2LeftOfQ = RVOMath.leftOf(q1, q2, obstacle2.point_);
            KInt LengthQ       = RVOMath.absSq(q2 - q1);

            // KInt invLengthQ = 1.0f / RVOMath.absSq(q2 - q1);

            return(point1LeftOfQ * point2LeftOfQ >= 0 && RVOMath.sqr(point1LeftOfQ) / LengthQ > RVOMath.sqr(radius) && RVOMath.sqr(point2LeftOfQ) / LengthQ > RVOMath.sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node.left_) && queryVisibilityRecursive(q1, q2, radius, node.right_));
        }
Ejemplo n.º 9
0
        /**
         * <summary>Recursive method for computing the agent neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which agent neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current agent k-D tree node index.</param>
         */
        private void queryAgentTreeRecursive(Agent agent, ref float rangeSq, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    agent.insertAgentNeighbor(agents_[i], ref rangeSq);
                }
            }
            else
            {
                float distSqLeft  = RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].left_].minX_ - agent.position_.x_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.x_ - agentTree_[agentTree_[node].left_].maxX_)) + RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].left_].minY_ - agent.position_.y_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.y_ - agentTree_[agentTree_[node].left_].maxY_));
                float distSqRight = RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].right_].minX_ - agent.position_.x_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.x_ - agentTree_[agentTree_[node].right_].maxX_)) + RVOMath.sqr(Math.Max(0.0f, agentTree_[agentTree_[node].right_].minY_ - agent.position_.y_)) + RVOMath.sqr(Math.Max(0.0f, agent.position_.y_ - agentTree_[agentTree_[node].right_].maxY_));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
Ejemplo n.º 10
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <returns>The number of the line it fails on, and the number of lines
         * if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private int linearProgram2(IList <Line> lines, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            if (directionOpt)
            {
                /*
                 * Optimize direction. Note that the optimization velocity is of
                 * unit length in this case.
                 */
                result = optVelocity * radius;
            }
            else if (RVOMath.absSq(optVelocity) > RVOMath.sqr(radius))
            {
                /* Optimize closest point and outside circle. */
                result = RVOMath.normalize(optVelocity) * radius;
            }
            else
            {
                /* Optimize closest point and inside circle. */
                result = optVelocity;
            }

            for (int i = 0; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > 0.0f)
                {
                    /* Result does not satisfy constraint i. Compute new optimal result. */
                    Vector2 tempResult = result;
                    if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, ref result))
                    {
                        result = tempResult;

                        return(i);
                    }
                }
            }

            return(lines.Count);
        }
Ejemplo n.º 11
0
        /**
         * <summary>Computes the new velocity of this agent.</summary>
         */
        internal void computeNewVelocity()
        {
            orcaLines_.Clear();

            float invTimeHorizonObst = 1.0f / timeHorizonObst_;

            /* Create obstacle ORCA lines. */
            for (int i = 0; i < obstacleNeighbors_.Count; ++i)
            {
                Obstacle obstacle1 = obstacleNeighbors_[i].Value;
                Obstacle obstacle2 = obstacle1.next_;

                Vector2 relativePosition1 = obstacle1.point_ - position_;
                Vector2 relativePosition2 = obstacle2.point_ - position_;

                /*
                 * Check if velocity obstacle of obstacle is already taken care
                 * of by previously constructed obstacle ORCA lines.
                 */
                bool alreadyCovered = false;

                for (int j = 0; j < orcaLines_.Count; ++j)
                {
                    if (RVOMath.det(invTimeHorizonObst * relativePosition1 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVOMath.RVO_EPSILON && RVOMath.det(invTimeHorizonObst * relativePosition2 - orcaLines_[j].point, orcaLines_[j].direction) - invTimeHorizonObst * radius_ >= -RVOMath.RVO_EPSILON)
                    {
                        alreadyCovered = true;

                        break;
                    }
                }

                if (alreadyCovered)
                {
                    continue;
                }

                /* Not yet covered. Check for collisions. */
                float distSq1 = RVOMath.absSq(relativePosition1);
                float distSq2 = RVOMath.absSq(relativePosition2);

                float radiusSq = RVOMath.sqr(radius_);

                Vector2 obstacleVector = obstacle2.point_ - obstacle1.point_;
                float   s          = (-relativePosition1 * obstacleVector) / RVOMath.absSq(obstacleVector);
                float   distSqLine = RVOMath.absSq(-relativePosition1 - s * obstacleVector);

                Line line;

                if (s < 0.0f && distSq1 <= radiusSq)
                {
                    /* Collision with left vertex. Ignore if non-convex. */
                    if (obstacle1.convex_)
                    {
                        line.point     = new Vector2(0.0f, 0.0f);
                        line.direction = RVOMath.normalize(new Vector2(-relativePosition1.y(), relativePosition1.x()));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s > 1.0f && distSq2 <= radiusSq)
                {
                    /*
                     * Collision with right vertex. Ignore if non-convex or if
                     * it will be taken care of by neighboring obstacle.
                     */
                    if (obstacle2.convex_ && RVOMath.det(relativePosition2, obstacle2.direction_) >= 0.0f)
                    {
                        line.point     = new Vector2(0.0f, 0.0f);
                        line.direction = RVOMath.normalize(new Vector2(-relativePosition2.y(), relativePosition2.x()));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq)
                {
                    /* Collision with obstacle segment. */
                    line.point     = new Vector2(0.0f, 0.0f);
                    line.direction = -obstacle1.direction_;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * No collision. Compute legs. When obliquely viewed, both legs
                 * can come from a single vertex. Legs extend cut-off line when
                 * non-convex vertex.
                 */

                Vector2 leftLegDirection, rightLegDirection;

                if (s < 0.0f && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that left vertex
                     * defines velocity obstacle.
                     */
                    if (!obstacle1.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle2 = obstacle1;

                    float leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                    leftLegDirection  = new Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                    rightLegDirection = new Vector2(relativePosition1.x() * leg1 + relativePosition1.y() * radius_, -relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                }
                else if (s > 1.0f && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that
                     * right vertex defines velocity obstacle.
                     */
                    if (!obstacle2.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle1 = obstacle2;

                    float leg2 = RVOMath.sqrt(distSq2 - radiusSq);
                    leftLegDirection  = new Vector2(relativePosition2.x() * leg2 - relativePosition2.y() * radius_, relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                    rightLegDirection = new Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                }
                else
                {
                    /* Usual situation. */
                    if (obstacle1.convex_)
                    {
                        float leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                        leftLegDirection = new Vector2(relativePosition1.x() * leg1 - relativePosition1.y() * radius_, relativePosition1.x() * radius_ + relativePosition1.y() * leg1) / distSq1;
                    }
                    else
                    {
                        /* Left vertex non-convex; left leg extends cut-off line. */
                        leftLegDirection = -obstacle1.direction_;
                    }

                    if (obstacle2.convex_)
                    {
                        float leg2 = RVOMath.sqrt(distSq2 - radiusSq);
                        rightLegDirection = new Vector2(relativePosition2.x() * leg2 + relativePosition2.y() * radius_, -relativePosition2.x() * radius_ + relativePosition2.y() * leg2) / distSq2;
                    }
                    else
                    {
                        /* Right vertex non-convex; right leg extends cut-off line. */
                        rightLegDirection = obstacle1.direction_;
                    }
                }

                /*
                 * Legs can never point into neighboring edge when convex
                 * vertex, take cutoff-line of neighboring edge instead. If
                 * velocity projected on "foreign" leg, no constraint is added.
                 */

                Obstacle leftNeighbor = obstacle1.previous_;

                bool isLeftLegForeign  = false;
                bool isRightLegForeign = false;

                if (obstacle1.convex_ && RVOMath.det(leftLegDirection, -leftNeighbor.direction_) >= 0.0f)
                {
                    /* Left leg points into obstacle. */
                    leftLegDirection = -leftNeighbor.direction_;
                    isLeftLegForeign = true;
                }

                if (obstacle2.convex_ && RVOMath.det(rightLegDirection, obstacle2.direction_) <= 0.0f)
                {
                    /* Right leg points into obstacle. */
                    rightLegDirection = obstacle2.direction_;
                    isRightLegForeign = true;
                }

                /* Compute cut-off centers. */
                Vector2 leftCutOff   = invTimeHorizonObst * (obstacle1.point_ - position_);
                Vector2 rightCutOff  = invTimeHorizonObst * (obstacle2.point_ - position_);
                Vector2 cutOffVector = rightCutOff - leftCutOff;

                /* Project current velocity on velocity obstacle. */

                /* Check if current velocity is projected on cutoff circles. */
                float t      = obstacle1 == obstacle2 ? 0.5f : ((velocity_ - leftCutOff) * cutOffVector) / RVOMath.absSq(cutOffVector);
                float tLeft  = (velocity_ - leftCutOff) * leftLegDirection;
                float tRight = (velocity_ - rightCutOff) * rightLegDirection;

                if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))
                {
                    /* Project on left cut-off circle. */
                    Vector2 unitW = RVOMath.normalize(velocity_ - leftCutOff);

                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    line.point     = leftCutOff + radius_ * invTimeHorizonObst * unitW;
                    orcaLines_.Add(line);

                    continue;
                }
                else if (t > 1.0f && tRight < 0.0f)
                {
                    /* Project on right cut-off circle. */
                    Vector2 unitW = RVOMath.normalize(velocity_ - rightCutOff);

                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    line.point     = rightCutOff + radius_ * invTimeHorizonObst * unitW;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * Project on left leg, right leg, or cut-off line, whichever is
                 * closest to velocity.
                 */
                float distSqCutoff = (t <0.0f || t> 1.0f || obstacle1 == obstacle2) ? float.PositiveInfinity : RVOMath.absSq(velocity_ - (leftCutOff + t * cutOffVector));
                float distSqLeft   = tLeft < 0.0f ? float.PositiveInfinity : RVOMath.absSq(velocity_ - (leftCutOff + tLeft * leftLegDirection));
                float distSqRight  = tRight < 0.0f ? float.PositiveInfinity : RVOMath.absSq(velocity_ - (rightCutOff + tRight * rightLegDirection));

                if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight)
                {
                    /* Project on cut-off line. */
                    line.direction = -obstacle1.direction_;
                    line.point     = leftCutOff + radius_ * invTimeHorizonObst * new Vector2(-line.direction.y(), line.direction.x());
                    orcaLines_.Add(line);

                    continue;
                }

                if (distSqLeft <= distSqRight)
                {
                    /* Project on left leg. */
                    if (isLeftLegForeign)
                    {
                        continue;
                    }

                    line.direction = leftLegDirection;
                    line.point     = leftCutOff + radius_ * invTimeHorizonObst * new Vector2(-line.direction.y(), line.direction.x());
                    orcaLines_.Add(line);

                    continue;
                }

                /* Project on right leg. */
                if (isRightLegForeign)
                {
                    continue;
                }

                line.direction = -rightLegDirection;
                line.point     = rightCutOff + radius_ * invTimeHorizonObst * new Vector2(-line.direction.y(), line.direction.x());
                orcaLines_.Add(line);
            }

            int numObstLines = orcaLines_.Count;

            float invTimeHorizon = 1.0f / timeHorizon_;

            /* Create agent ORCA lines. */
            for (int i = 0; i < agentNeighbors_.Count; ++i)
            {
                Agent other = agentNeighbors_[i].Value;

                Vector2 relativePosition = other.position_ - position_;
                Vector2 relativeVelocity = velocity_ - other.velocity_;
                float   distSq           = RVOMath.absSq(relativePosition);
                float   combinedRadius   = radius_ + other.radius_;
                float   combinedRadiusSq = RVOMath.sqr(combinedRadius);

                Line    line;
                Vector2 u;

                if (distSq > combinedRadiusSq)
                {
                    /* No collision. */
                    Vector2 w = relativeVelocity - invTimeHorizon * relativePosition;

                    /* Vector from cutoff center to relative velocity. */
                    float wLengthSq   = RVOMath.absSq(w);
                    float dotProduct1 = w * relativePosition;

                    if (dotProduct1 < 0.0f && RVOMath.sqr(dotProduct1) > combinedRadiusSq * wLengthSq)
                    {
                        /* Project on cut-off circle. */
                        float   wLength = RVOMath.sqrt(wLengthSq);
                        Vector2 unitW   = w / wLength;

                        line.direction = new Vector2(unitW.y(), -unitW.x());
                        u = (combinedRadius * invTimeHorizon - wLength) * unitW;
                    }
                    else
                    {
                        /* Project on legs. */
                        float leg = RVOMath.sqrt(distSq - combinedRadiusSq);

                        if (RVOMath.det(relativePosition, w) > 0.0f)
                        {
                            /* Project on left leg. */
                            line.direction = new Vector2(relativePosition.x() * leg - relativePosition.y() * combinedRadius, relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
                        }
                        else
                        {
                            /* Project on right leg. */
                            line.direction = -new Vector2(relativePosition.x() * leg + relativePosition.y() * combinedRadius, -relativePosition.x() * combinedRadius + relativePosition.y() * leg) / distSq;
                        }

                        float dotProduct2 = relativeVelocity * line.direction;
                        u = dotProduct2 * line.direction - relativeVelocity;
                    }
                }
                else
                {
                    /* Collision. Project on cut-off circle of time timeStep. */
                    float invTimeStep = 1.0f / TimeStep;

                    /* Vector from cutoff center to relative velocity. */
                    Vector2 w = relativeVelocity - invTimeStep * relativePosition;

                    float   wLength = RVOMath.abs(w);
                    Vector2 unitW   = w / wLength;

                    line.direction = new Vector2(unitW.y(), -unitW.x());
                    u = (combinedRadius * invTimeStep - wLength) * unitW;
                }

                line.point = velocity_ + 0.5f * u;
                orcaLines_.Add(line);
            }

            int lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, ref newVelocity_);

            if (lineFail < orcaLines_.Count)
            {
                linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, ref newVelocity_);
            }
        }
Ejemplo n.º 12
0
        /**
         * <summary>Solves a one-dimensional linear program on a specified line
         * subject to linear constraints defined by lines and a circular
         * constraint.</summary>
         *
         * <returns>True if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="lineNo">The specified line constraint.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private bool linearProgram1(IList <Line> lines, int lineNo, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            float dotProduct   = lines[lineNo].point * lines[lineNo].direction;
            float discriminant = RVOMath.sqr(dotProduct) + RVOMath.sqr(radius) - RVOMath.absSq(lines[lineNo].point);

            if (discriminant < 0.0f)
            {
                /* Max speed circle fully invalidates line lineNo. */
                return(false);
            }

            float sqrtDiscriminant = RVOMath.sqrt(discriminant);
            float tLeft            = -dotProduct - sqrtDiscriminant;
            float tRight           = -dotProduct + sqrtDiscriminant;

            for (int i = 0; i < lineNo; ++i)
            {
                float denominator = RVOMath.det(lines[lineNo].direction, lines[i].direction);
                float numerator   = RVOMath.det(lines[i].direction, lines[lineNo].point - lines[i].point);

                if (RVOMath.fabs(denominator) <= RVOMath.RVO_EPSILON)
                {
                    /* Lines lineNo and i are (almost) parallel. */
                    if (numerator < 0.0f)
                    {
                        return(false);
                    }

                    continue;
                }

                float t = numerator / denominator;

                if (denominator >= 0.0f)
                {
                    /* Line i bounds line lineNo on the right. */
                    tRight = Math.Min(tRight, t);
                }
                else
                {
                    /* Line i bounds line lineNo on the left. */
                    tLeft = Math.Max(tLeft, t);
                }

                if (tLeft > tRight)
                {
                    return(false);
                }
            }

            if (directionOpt)
            {
                /* Optimize direction. */
                if (optVelocity * lines[lineNo].direction > 0.0f)
                {
                    /* Take right extreme. */
                    result = lines[lineNo].point + tRight * lines[lineNo].direction;
                }
                else
                {
                    /* Take left extreme. */
                    result = lines[lineNo].point + tLeft * lines[lineNo].direction;
                }
            }
            else
            {
                /* Optimize closest point. */

                Vector2 v  = (optVelocity - lines[lineNo].point);
                float   v2 = lines[lineNo].direction * v;

                float t = lines[lineNo].direction * (optVelocity - lines[lineNo].point);

                if (t < tLeft)
                {
                    result = lines[lineNo].point + tLeft * lines[lineNo].direction;
                }
                else if (t > tRight)
                {
                    result = lines[lineNo].point + tRight * lines[lineNo].direction;
                }
                else
                {
                    result = lines[lineNo].point + t * lines[lineNo].direction;
                }
            }

            return(true);
        }
Ejemplo n.º 13
0
        /**
         * <summary>Computes the new velocity of this agent.</summary>
         */
        internal void computeNewVelocity()
        {
            orcaLines_.Clear();

            //KInt invTimeHorizonObst = 1 / timeHorizonObst_;

            KInt tempradius = radius_ / timeHorizonObst_;

            /* Create obstacle ORCA lines. */
            for (int i = 0; i < obstacleNeighbors_.Count; ++i)
            {
                Obstacle obstacle1 = obstacleNeighbors_[i].Value;
                Obstacle obstacle2 = obstacle1.next_;

                KInt2 relativePosition1 = obstacle1.point_ - position_;
                KInt2 relativePosition2 = obstacle2.point_ - position_;

                /*
                 * Check if velocity obstacle of obstacle is already taken care
                 * of by previously constructed obstacle ORCA lines.
                 */
                bool alreadyCovered = false;

                for (int j = 0; j < orcaLines_.Count; ++j)
                {
                    if (RVOMath.det(relativePosition1 / timeHorizonObst_ - orcaLines_[j].point, orcaLines_[j].direction) - tempradius >= 0 && RVOMath.det(relativePosition2 / timeHorizonObst_ - orcaLines_[j].point, orcaLines_[j].direction) - tempradius >= 0)
                    {
                        alreadyCovered = true;

                        break;
                    }
                }

                if (alreadyCovered)
                {
                    continue;
                }

                /* Not yet covered. Check for collisions. */
                KInt distSq1 = RVOMath.absSq(relativePosition1);
                KInt distSq2 = RVOMath.absSq(relativePosition2);

                KInt radiusSq = RVOMath.sqr(radius_);

                KInt2 obstacleVector = obstacle2.point_ - obstacle1.point_;
                KInt  s          = (-RVOMath.Dot(relativePosition1, obstacleVector)) / RVOMath.absSq(obstacleVector);
                KInt  distSqLine = RVOMath.absSq(-relativePosition1 - s * obstacleVector);

                Line line = new Line();

                if (s < 0 && distSq1 <= radiusSq)
                {
                    /* Collision with left vertex. Ignore if non-convex. */
                    if (obstacle1.convex_)
                    {
                        line.point     = KInt2.zero;
                        line.direction = RVOMath.normalize(KInt2.ToInt2(-relativePosition1.IntY, relativePosition1.IntX));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s > 1 && distSq2 <= radiusSq)
                {
                    /*
                     * Collision with right vertex. Ignore if non-convex or if
                     * it will be taken care of by neighboring obstacle.
                     */
                    if (obstacle2.convex_ && RVOMath.det(relativePosition2, obstacle2.direction_) >= 0)
                    {
                        line.point     = KInt2.zero;
                        line.direction = RVOMath.normalize(KInt2.ToInt2(-relativePosition2.IntY, relativePosition2.IntX));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s >= 0 && s < 1 && distSqLine <= radiusSq)
                {
                    /* Collision with obstacle segment. */
                    line.point     = KInt2.zero;
                    line.direction = -obstacle1.direction_;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * No collision. Compute legs. When obliquely viewed, both legs
                 * can come from a single vertex. Legs extend cut-off line when
                 * non-convex vertex.
                 */

                KInt2 leftLegDirection, rightLegDirection;

                if (s < 0 && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that left vertex
                     * defines velocity obstacle.
                     */
                    if (!obstacle1.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle2 = obstacle1;

                    KInt leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                    leftLegDirection  = KInt2.ToInt2(relativePosition1.IntX * leg1 - relativePosition1.IntY * radius_, relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1;
                    rightLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 + relativePosition1.IntY * radius_, -relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1;
                    if (isover(leftLegDirection) || isover(rightLegDirection))
                    {
                        UnityEngine.Debug.LogError("!!!");
                    }
                }
                else if (s > 1 && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that
                     * right vertex defines velocity obstacle.
                     */
                    if (!obstacle2.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle1 = obstacle2;

                    KInt leg2 = RVOMath.sqrt(distSq2 - radiusSq);
                    leftLegDirection  = KInt2.ToInt2(relativePosition2.IntX * leg2 - relativePosition2.IntY * radius_, relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2;
                    rightLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 + relativePosition2.IntY * radius_, -relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2;
                    if (isover(leftLegDirection) || isover(rightLegDirection))
                    {
                        Debug.LogError("!!!");
                    }
                }
                else
                {
                    /* Usual situation. */
                    if (obstacle1.convex_)
                    {
                        KInt leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                        leftLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 - relativePosition1.IntY * radius_, relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1;
                        if (isover(leftLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }
                    else
                    {
                        /* Left vertex non-convex; left leg extends cut-off line. */
                        leftLegDirection = -obstacle1.direction_;
                        if (isover(leftLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }

                    if (obstacle2.convex_)
                    {
                        KInt leg2 = RVOMath.sqrt(distSq2 - radiusSq);

                        rightLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 + relativePosition2.IntY * radius_, -relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2;
                        if (isover(rightLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }
                    else
                    {
                        /* Right vertex non-convex; right leg extends cut-off line. */
                        rightLegDirection = obstacle1.direction_;
                        if (isover(rightLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }
                }

                /*
                 * Legs can never point into neighboring edge when convex
                 * vertex, take cutoff-line of neighboring edge instead. If
                 * velocity projected on "foreign" leg, no constraint is added.
                 */

                Obstacle leftNeighbor = obstacle1.previous_;

                bool isLeftLegForeign  = false;
                bool isRightLegForeign = false;

                if (obstacle1.convex_ && RVOMath.det(leftLegDirection, -leftNeighbor.direction_) >= 0)
                {
                    /* Left leg points into obstacle. */
                    leftLegDirection = -leftNeighbor.direction_;
                    if (isover(leftLegDirection))
                    {
                        Debug.LogError("!!!");
                    }
                    isLeftLegForeign = true;
                }

                if (obstacle2.convex_ && RVOMath.det(rightLegDirection, obstacle2.direction_) <= 0)
                {
                    /* Right leg points into obstacle. */
                    rightLegDirection = obstacle2.direction_;
                    isRightLegForeign = true;
                    if (isover(rightLegDirection))
                    {
                        Debug.LogError("!!!");
                    }
                }

                /* Compute cut-off centers. */
                KInt2 leftCutOff   = (obstacle1.point_ - position_) / timeHorizonObst_;
                KInt2 rightCutOff  = (obstacle2.point_ - position_) / timeHorizonObst_;
                KInt2 cutOffVector = rightCutOff - leftCutOff;

                /* Project current velocity on velocity obstacle. */

                /* Check if current velocity is projected on cutoff circles. */
                KInt sqvalue = RVOMath.absSq(cutOffVector);
                KInt t       = KInt.ToInt(KInt.divscale / 2);
                if (obstacle1 != obstacle2)
                {
                    if (sqvalue == 0)
                    {
                        t = KInt.MaxValue;
                    }
                    else
                    {
                        t = RVOMath.Dot((velocity_ - leftCutOff), cutOffVector) / sqvalue;
                    }
                }

                KInt tLeft  = RVOMath.Dot((velocity_ - leftCutOff), leftLegDirection);
                KInt tRight = RVOMath.Dot((velocity_ - rightCutOff), rightLegDirection);

                if ((t < 0 && tLeft < 0) || (obstacle1 == obstacle2 && tLeft < 0 && tRight < 0))
                {
                    /* Project on left cut-off circle. */
                    KInt2 unitW = RVOMath.normalize((velocity_ - leftCutOff));

                    line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);
                    line.point     = leftCutOff + radius_ * unitW / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }
                else if (t > 1 && tRight < 0)
                {
                    /* Project on right cut-off circle. */
                    KInt2 unitW = RVOMath.normalize((velocity_ - rightCutOff));

                    line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);
                    line.point     = rightCutOff + radius_ * unitW / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * Project on left leg, right leg, or cut-off line, whichever is
                 * closest to velocity.
                 */
                KInt distSqCutoff = (t < 0 || t > 1 || obstacle1 == obstacle2) ? KInt.MaxValue : RVOMath.absSq(velocity_ - (leftCutOff + t * cutOffVector));
                KInt distSqLeft   = tLeft < 0 ? KInt.MaxValue : RVOMath.absSq(velocity_ - (leftCutOff + tLeft * leftLegDirection));
                KInt distSqRight  = tRight < 0 ? KInt.MaxValue : RVOMath.absSq(velocity_ - (rightCutOff + tRight * rightLegDirection));

                if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight)
                {
                    /* Project on cut-off line. */
                    line.direction = -obstacle1.direction_;
                    line.point     = leftCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }

                if (distSqLeft <= distSqRight)
                {
                    /* Project on left leg. */
                    if (isLeftLegForeign)
                    {
                        continue;
                    }

                    line.direction = leftLegDirection;
                    line.point     = leftCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }

                /* Project on right leg. */
                if (isRightLegForeign)
                {
                    continue;
                }

                line.direction = -rightLegDirection;
                line.point     = rightCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_;
                orcaLines_.Add(line);
            }

            int numObstLines = orcaLines_.Count;

            //KInt invTimeHorizon = 1 / timeHorizon_;

            /* Create agent ORCA lines. */
            for (int i = 0; i < agentNeighbors_.Count; ++i)
            {
                Agent other = agentNeighbors_[i].Value;

                KInt2 relativePosition = other.position_ - position_;
                KInt2 relativeVelocity = velocity_ - other.velocity_;
                KInt  distSq           = RVOMath.absSq(relativePosition);
                KInt  combinedRadius   = radius_ + other.radius_;
                KInt  combinedRadiusSq = RVOMath.sqr(combinedRadius);

                Line  line = new Line();
                KInt2 u;

                if (distSq > combinedRadiusSq)
                {
                    /* No collision. */
                    KInt2 w = relativeVelocity - relativePosition / timeHorizon_;
                    /* Vector from cutoff center to relative velocity. */
                    KInt wLengthSq = RVOMath.absSq(w);

                    KInt dotProduct1 = RVOMath.Dot(w, relativePosition);

                    if (dotProduct1 < 0 && RVOMath.sqr(dotProduct1) > combinedRadiusSq * wLengthSq)
                    {
                        /* Project on cut-off circle. */
                        KInt wLength = RVOMath.sqrt(wLengthSq);
                        if (wLength == 0)
                        {
                            continue;
                        }
                        KInt2 unitW = w / wLength;

                        line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);
                        u = (combinedRadius / timeHorizon_ - wLength) * unitW;
                    }
                    else
                    {
                        /* Project on legs. */
                        KInt leg = RVOMath.sqrt(distSq - combinedRadiusSq);

                        if (RVOMath.det(relativePosition, w) > 0)
                        {
                            /* Project on left leg. */
                            line.direction = KInt2.ToInt2(relativePosition.IntX * leg - relativePosition.IntY * combinedRadius, relativePosition.IntX * combinedRadius + relativePosition.IntY * leg) / distSq;
                        }
                        else
                        {
                            /* Project on right leg. */
                            line.direction = -KInt2.ToInt2(relativePosition.IntX * leg + relativePosition.IntY * combinedRadius, -relativePosition.IntX * combinedRadius + relativePosition.IntY * leg) / distSq;
                        }

                        KInt dotProduct2 = RVOMath.Dot(relativeVelocity, line.direction);
                        u = dotProduct2 * line.direction - relativeVelocity;
                    }
                }
                else
                {
                    /* Collision. Project on cut-off circle of time timeStep. */
                    //KInt invTimeStep = 1 / Simulator.Instance.timeStep_;
                    /* Vector from cutoff center to relative velocity. */
                    KInt2 w       = relativeVelocity - relativePosition / Simulator.Instance.timeStep_;
                    KInt  wLength = RVOMath.abs(w);
                    if (wLength == 0)
                    {
                        continue;
                    }
                    KInt2 unitW = w / wLength;

                    line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);

                    u = (combinedRadius / Simulator.Instance.timeStep_ - wLength) * unitW;
                }

                line.point = velocity_ + u / 2;
                orcaLines_.Add(line);
            }

            int lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, ref newVelocity_);

            if (lineFail < orcaLines_.Count)
            {
                linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, ref newVelocity_);
            }
        }