Ejemplo n.º 1
0
        /**
         * <summary>Inserts an agent neighbor into the set of neighbors of this
         * agent.</summary>
         *
         * <param name="agent">A pointer to the agent to be inserted.</param>
         * <param name="rangeSq">The squared range around this agent.</param>
         */
        internal void InsertAgentNeighbor(Agent agent, ref float rangeSq)
        {
            if (this != agent)
            {
                float distSq = RVOMath.AbsSq(Position - agent.Position);

                if (distSq < rangeSq)
                {
                    if (AgentNeighbors.Count < MaxNeighbors)
                    {
                        AgentNeighbors.Add(new KeyValuePair <float, Agent>(distSq, agent));
                    }

                    int i = AgentNeighbors.Count - 1;

                    while (i != 0 && distSq < AgentNeighbors[i - 1].Key)
                    {
                        AgentNeighbors[i] = AgentNeighbors[i - 1];
                        --i;
                    }

                    AgentNeighbors[i] = new KeyValuePair <float, Agent>(distSq, agent);

                    if (AgentNeighbors.Count == MaxNeighbors)
                    {
                        rangeSq = AgentNeighbors[AgentNeighbors.Count - 1].Key;
                    }
                }
            }
        }
Ejemplo n.º 2
0
        /**
         * <summary>Recursive method for computing the obstacle neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which obstacle neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private static void QueryObstacleTreeRecursive(Agent agent, float rangeSq, ObstacleTreeNode node)
        {
            if (node != null)
            {
                Obstacle obstacle1 = node.Obstacle;
                Obstacle obstacle2 = obstacle1.Next;

                float agentLeftOfLine = RVOMath.LeftOf(obstacle1.Point, obstacle2.Point, agent.Position);

                QueryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0.0f ? node.Left : node.Right);

                float distSqLine = RVOMath.Sqr(agentLeftOfLine) / RVOMath.AbsSq(obstacle2.Point - obstacle1.Point);

                if (distSqLine < rangeSq)
                {
                    if (agentLeftOfLine < 0.0f)
                    {
                        /*
                         * Try obstacle at this node only if agent is on right side of
                         * obstacle (and can see obstacle).
                         */
                        agent.InsertObstacleNeighbor(node.Obstacle, rangeSq);
                    }

                    /* Try other side of line. */
                    QueryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0.0f ? node.Right : node.Left);
                }
            }
        }
Ejemplo n.º 3
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <returns>The number of the line it fails on, and the number of lines
         * if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private static int LinearProgram2(IList <Line> lines, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            if (directionOpt)
            {
                /*
                 * Optimize direction. Note that the optimization velocity is of
                 * unit length in this case.
                 */
                result = optVelocity * radius;
            }
            else if (RVOMath.AbsSq(optVelocity) > RVOMath.Sqr(radius))
            {
                /* Optimize closest point and outside circle. */
                result = RVOMath.Normalize(optVelocity) * radius;
            }
            else
            {
                /* Optimize closest point and inside circle. */
                result = optVelocity;
            }

            for (int i = 0; i < lines.Count; ++i)
            {
                if (RVOMath.Det(lines[i].Direction, lines[i].Point - result) > 0.0f)
                {
                    /* Result does not satisfy constraint i. Compute new optimal result. */
                    Vector2 tempResult = result;
                    if (!LinearProgram1(lines, i, radius, optVelocity, directionOpt, ref result))
                    {
                        result = tempResult;

                        return(i);
                    }
                }
            }

            return(lines.Count);
        }
Ejemplo n.º 4
0
        /**
         * <summary>Recursive method for querying the visibility between two
         * points within a specified radius.</summary>
         *
         * <returns>True if q1 and q2 are mutually visible within the radius;
         * false otherwise.</returns>
         *
         * <param name="q1">The first point between which visibility is to be
         * tested.</param>
         * <param name="q2">The second point between which visibility is to be
         * tested.</param>
         * <param name="radius">The radius within which visibility is to be
         * tested.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private static bool QueryVisibilityRecursive(Vector2 q1, Vector2 q2, float radius, ObstacleTreeNode node)
        {
            if (node == null)
            {
                return(true);
            }

            Obstacle obstacle1 = node.Obstacle;
            Obstacle obstacle2 = obstacle1.Next;

            float q1LeftOfI  = RVOMath.LeftOf(obstacle1.Point, obstacle2.Point, q1);
            float q2LeftOfI  = RVOMath.LeftOf(obstacle1.Point, obstacle2.Point, q2);
            float invLengthI = 1.0f / RVOMath.AbsSq(obstacle2.Point - obstacle1.Point);

            if (q1LeftOfI >= 0.0f && q2LeftOfI >= 0.0f)
            {
                return(QueryVisibilityRecursive(q1, q2, radius, node.Left) && ((RVOMath.Sqr(q1LeftOfI) * invLengthI >= RVOMath.Sqr(radius) && RVOMath.Sqr(q2LeftOfI) * invLengthI >= RVOMath.Sqr(radius)) || QueryVisibilityRecursive(q1, q2, radius, node.Right)));
            }

            if (q1LeftOfI <= 0.0f && q2LeftOfI <= 0.0f)
            {
                return(QueryVisibilityRecursive(q1, q2, radius, node.Right) && ((RVOMath.Sqr(q1LeftOfI) * invLengthI >= RVOMath.Sqr(radius) && RVOMath.Sqr(q2LeftOfI) * invLengthI >= RVOMath.Sqr(radius)) || QueryVisibilityRecursive(q1, q2, radius, node.Left)));
            }

            if (q1LeftOfI >= 0.0f && q2LeftOfI <= 0.0f)
            {
                /* One can see through obstacle from left to right. */
                return(QueryVisibilityRecursive(q1, q2, radius, node.Left) && QueryVisibilityRecursive(q1, q2, radius, node.Right));
            }

            float point1LeftOfQ = RVOMath.LeftOf(q1, q2, obstacle1.Point);
            float point2LeftOfQ = RVOMath.LeftOf(q1, q2, obstacle2.Point);
            float invLengthQ    = 1.0f / RVOMath.AbsSq(q2 - q1);

            return(point1LeftOfQ * point2LeftOfQ >= 0.0f && RVOMath.Sqr(point1LeftOfQ) * invLengthQ > RVOMath.Sqr(radius) && RVOMath.Sqr(point2LeftOfQ) * invLengthQ > RVOMath.Sqr(radius) && QueryVisibilityRecursive(q1, q2, radius, node.Left) && QueryVisibilityRecursive(q1, q2, radius, node.Right));
        }
Ejemplo n.º 5
0
        /**
         * <summary>Computes the new velocity of this agent.</summary>
         */
        internal void ComputeNewVelocity()
        {
            OrcaLines.Clear();

            float invTimeHorizonObst = 1.0f / TimeHorizonObst;

            /* Create obstacle ORCA lines. */
            for (int i = 0; i < ObstacleNeighbors.Count; ++i)
            {
                Obstacle obstacle1 = ObstacleNeighbors[i].Value;
                Obstacle obstacle2 = obstacle1.Next;

                Vector2 relativePosition1 = obstacle1.Point - Position;
                Vector2 relativePosition2 = obstacle2.Point - Position;

                /*
                 * Check if velocity obstacle of obstacle is already taken care
                 * of by previously constructed obstacle ORCA lines.
                 */
                bool alreadyCovered = false;

                for (int j = 0; j < OrcaLines.Count; ++j)
                {
                    if (RVOMath.Det(invTimeHorizonObst * relativePosition1 - OrcaLines[j].Point, OrcaLines[j].Direction) - invTimeHorizonObst * Radius >= -RVOMath.RvoEpsilon && RVOMath.Det(invTimeHorizonObst * relativePosition2 - OrcaLines[j].Point, OrcaLines[j].Direction) - invTimeHorizonObst * Radius >= -RVOMath.RvoEpsilon)
                    {
                        alreadyCovered = true;

                        break;
                    }
                }

                if (alreadyCovered)
                {
                    continue;
                }

                /* Not yet covered. Check for collisions. */
                float distSq1 = RVOMath.AbsSq(relativePosition1);
                float distSq2 = RVOMath.AbsSq(relativePosition2);

                float radiusSq = RVOMath.Sqr(Radius);

                Vector2 obstacleVector = obstacle2.Point - obstacle1.Point;
                float   s          = (-relativePosition1 * obstacleVector) / RVOMath.AbsSq(obstacleVector);
                float   distSqLine = RVOMath.AbsSq(-relativePosition1 - s * obstacleVector);

                Line line;

                if (s < 0.0f && distSq1 <= radiusSq)
                {
                    /* Collision with left vertex. Ignore if non-convex. */
                    if (obstacle1.Convex)
                    {
                        line.Point     = new Vector2(0.0f, 0.0f);
                        line.Direction = RVOMath.Normalize(new Vector2(-relativePosition1.Y, relativePosition1.X));
                        OrcaLines.Add(line);
                    }

                    continue;
                }
                else if (s > 1.0f && distSq2 <= radiusSq)
                {
                    /*
                     * Collision with right vertex. Ignore if non-convex or if
                     * it will be taken care of by neighboring obstacle.
                     */
                    if (obstacle2.Convex && RVOMath.Det(relativePosition2, obstacle2.Direction) >= 0.0f)
                    {
                        line.Point     = new Vector2(0.0f, 0.0f);
                        line.Direction = RVOMath.Normalize(new Vector2(-relativePosition2.Y, relativePosition2.X));
                        OrcaLines.Add(line);
                    }

                    continue;
                }
                else if (s >= 0.0f && s < 1.0f && distSqLine <= radiusSq)
                {
                    /* Collision with obstacle segment. */
                    line.Point     = new Vector2(0.0f, 0.0f);
                    line.Direction = -obstacle1.Direction;
                    OrcaLines.Add(line);

                    continue;
                }

                /*
                 * No collision. Compute legs. When obliquely viewed, both legs
                 * can come from a single vertex. Legs extend cut-off line when
                 * non-convex vertex.
                 */

                Vector2 leftLegDirection, rightLegDirection;

                if (s < 0.0f && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that left vertex
                     * defines velocity obstacle.
                     */
                    if (!obstacle1.Convex)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle2 = obstacle1;

                    float leg1 = RVOMath.Sqrt(distSq1 - radiusSq);
                    leftLegDirection  = new Vector2(relativePosition1.X * leg1 - relativePosition1.Y * Radius, relativePosition1.X * Radius + relativePosition1.Y * leg1) / distSq1;
                    rightLegDirection = new Vector2(relativePosition1.X * leg1 + relativePosition1.Y * Radius, -relativePosition1.X * Radius + relativePosition1.Y * leg1) / distSq1;
                }
                else if (s > 1.0f && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that
                     * right vertex defines velocity obstacle.
                     */
                    if (!obstacle2.Convex)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle1 = obstacle2;

                    float leg2 = RVOMath.Sqrt(distSq2 - radiusSq);
                    leftLegDirection  = new Vector2(relativePosition2.X * leg2 - relativePosition2.Y * Radius, relativePosition2.X * Radius + relativePosition2.Y * leg2) / distSq2;
                    rightLegDirection = new Vector2(relativePosition2.X * leg2 + relativePosition2.Y * Radius, -relativePosition2.X * Radius + relativePosition2.Y * leg2) / distSq2;
                }
                else
                {
                    /* Usual situation. */
                    if (obstacle1.Convex)
                    {
                        float leg1 = RVOMath.Sqrt(distSq1 - radiusSq);
                        leftLegDirection = new Vector2(relativePosition1.X * leg1 - relativePosition1.Y * Radius, relativePosition1.X * Radius + relativePosition1.Y * leg1) / distSq1;
                    }
                    else
                    {
                        /* Left vertex non-convex; left leg extends cut-off line. */
                        leftLegDirection = -obstacle1.Direction;
                    }

                    if (obstacle2.Convex)
                    {
                        float leg2 = RVOMath.Sqrt(distSq2 - radiusSq);
                        rightLegDirection = new Vector2(relativePosition2.X * leg2 + relativePosition2.Y * Radius, -relativePosition2.X * Radius + relativePosition2.Y * leg2) / distSq2;
                    }
                    else
                    {
                        /* Right vertex non-convex; right leg extends cut-off line. */
                        rightLegDirection = obstacle1.Direction;
                    }
                }

                /*
                 * Legs can never point into neighboring edge when convex
                 * vertex, take cutoff-line of neighboring edge instead. If
                 * velocity projected on "foreign" leg, no constraint is added.
                 */

                Obstacle leftNeighbor = obstacle1.Previous;

                bool isLeftLegForeign  = false;
                bool isRightLegForeign = false;

                if (obstacle1.Convex && RVOMath.Det(leftLegDirection, -leftNeighbor.Direction) >= 0.0f)
                {
                    /* Left leg points into obstacle. */
                    leftLegDirection = -leftNeighbor.Direction;
                    isLeftLegForeign = true;
                }

                if (obstacle2.Convex && RVOMath.Det(rightLegDirection, obstacle2.Direction) <= 0.0f)
                {
                    /* Right leg points into obstacle. */
                    rightLegDirection = obstacle2.Direction;
                    isRightLegForeign = true;
                }

                /* Compute cut-off centers. */
                Vector2 leftCutOff   = invTimeHorizonObst * (obstacle1.Point - Position);
                Vector2 rightCutOff  = invTimeHorizonObst * (obstacle2.Point - Position);
                Vector2 cutOffVector = rightCutOff - leftCutOff;

                /* Project current velocity on velocity obstacle. */

                /* Check if current velocity is projected on cutoff circles. */
                float t      = obstacle1 == obstacle2 ? 0.5f : ((Velocity - leftCutOff) * cutOffVector) / RVOMath.AbsSq(cutOffVector);
                float tLeft  = (Velocity - leftCutOff) * leftLegDirection;
                float tRight = (Velocity - rightCutOff) * rightLegDirection;

                if ((t < 0.0f && tLeft < 0.0f) || (obstacle1 == obstacle2 && tLeft < 0.0f && tRight < 0.0f))
                {
                    /* Project on left cut-off circle. */
                    Vector2 unitW = RVOMath.Normalize(Velocity - leftCutOff);

                    line.Direction = new Vector2(unitW.Y, -unitW.X);
                    line.Point     = leftCutOff + Radius * invTimeHorizonObst * unitW;
                    OrcaLines.Add(line);

                    continue;
                }
                else if (t > 1.0f && tRight < 0.0f)
                {
                    /* Project on right cut-off circle. */
                    Vector2 unitW = RVOMath.Normalize(Velocity - rightCutOff);

                    line.Direction = new Vector2(unitW.Y, -unitW.X);
                    line.Point     = rightCutOff + Radius * invTimeHorizonObst * unitW;
                    OrcaLines.Add(line);

                    continue;
                }

                /*
                 * Project on left leg, right leg, or cut-off line, whichever is
                 * closest to velocity.
                 */
                float distSqCutoff = (t <0.0f || t> 1.0f || obstacle1 == obstacle2) ? float.PositiveInfinity : RVOMath.AbsSq(Velocity - (leftCutOff + t * cutOffVector));
                float distSqLeft   = tLeft < 0.0f ? float.PositiveInfinity : RVOMath.AbsSq(Velocity - (leftCutOff + tLeft * leftLegDirection));
                float distSqRight  = tRight < 0.0f ? float.PositiveInfinity : RVOMath.AbsSq(Velocity - (rightCutOff + tRight * rightLegDirection));

                if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight)
                {
                    /* Project on cut-off line. */
                    line.Direction = -obstacle1.Direction;
                    line.Point     = leftCutOff + Radius * invTimeHorizonObst * new Vector2(-line.Direction.Y, line.Direction.X);
                    OrcaLines.Add(line);

                    continue;
                }

                if (distSqLeft <= distSqRight)
                {
                    /* Project on left leg. */
                    if (isLeftLegForeign)
                    {
                        continue;
                    }

                    line.Direction = leftLegDirection;
                    line.Point     = leftCutOff + Radius * invTimeHorizonObst * new Vector2(-line.Direction.Y, line.Direction.X);
                    OrcaLines.Add(line);

                    continue;
                }

                /* Project on right leg. */
                if (isRightLegForeign)
                {
                    continue;
                }

                line.Direction = -rightLegDirection;
                line.Point     = rightCutOff + Radius * invTimeHorizonObst * new Vector2(-line.Direction.Y, line.Direction.X);
                OrcaLines.Add(line);
            }

            int numObstLines = OrcaLines.Count;

            float invTimeHorizon = 1.0f / TimeHorizon;

            /* Create agent ORCA lines. */
            for (int i = 0; i < AgentNeighbors.Count; ++i)
            {
                Agent other = AgentNeighbors[i].Value;

                Vector2 relativePosition = other.Position - Position;
                Vector2 relativeVelocity = Velocity - other.Velocity;
                float   distSq           = RVOMath.AbsSq(relativePosition);
                float   combinedRadius   = Radius + other.Radius;
                float   combinedRadiusSq = RVOMath.Sqr(combinedRadius);

                Line    line;
                Vector2 u;

                if (distSq > combinedRadiusSq)
                {
                    /* No collision. */
                    Vector2 w = relativeVelocity - invTimeHorizon * relativePosition;

                    /* Vector from cutoff center to relative velocity. */
                    float wLengthSq   = RVOMath.AbsSq(w);
                    float dotProduct1 = w * relativePosition;

                    if (dotProduct1 < 0.0f && RVOMath.Sqr(dotProduct1) > combinedRadiusSq * wLengthSq)
                    {
                        /* Project on cut-off circle. */
                        float   wLength = RVOMath.Sqrt(wLengthSq);
                        Vector2 unitW   = w / wLength;

                        line.Direction = new Vector2(unitW.Y, -unitW.X);
                        u = (combinedRadius * invTimeHorizon - wLength) * unitW;
                    }
                    else
                    {
                        /* Project on legs. */
                        float leg = RVOMath.Sqrt(distSq - combinedRadiusSq);

                        if (RVOMath.Det(relativePosition, w) > 0.0f)
                        {
                            /* Project on left leg. */
                            line.Direction = new Vector2(relativePosition.X * leg - relativePosition.Y * combinedRadius, relativePosition.X * combinedRadius + relativePosition.Y * leg) / distSq;
                        }
                        else
                        {
                            /* Project on right leg. */
                            line.Direction = -new Vector2(relativePosition.X * leg + relativePosition.Y * combinedRadius, -relativePosition.X * combinedRadius + relativePosition.Y * leg) / distSq;
                        }

                        float dotProduct2 = relativeVelocity * line.Direction;
                        u = dotProduct2 * line.Direction - relativeVelocity;
                    }
                }
                else
                {
                    /* Collision. Project on cut-off circle of time timeStep. */
                    float invTimeStep = 1.0f / Simulator.Instance.TimeStep;

                    /* Vector from cutoff center to relative velocity. */
                    Vector2 w = relativeVelocity - invTimeStep * relativePosition;

                    float   wLength = RVOMath.Abs(w);
                    Vector2 unitW   = w / wLength;

                    line.Direction = new Vector2(unitW.Y, -unitW.X);
                    u = (combinedRadius * invTimeStep - wLength) * unitW;
                }

                line.Point = Velocity + 0.5f * u;
                OrcaLines.Add(line);
            }

            int lineFail = LinearProgram2(OrcaLines, MaxSpeed, PrefVelocity, false, ref _newVelocity);

            if (lineFail < OrcaLines.Count)
            {
                LinearProgram3(OrcaLines, numObstLines, lineFail, MaxSpeed, ref _newVelocity);
            }
        }
Ejemplo n.º 6
0
        /**
         * <summary>Solves a one-dimensional linear program on a specified line
         * subject to linear constraints defined by lines and a circular
         * constraint.</summary>
         *
         * <returns>True if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="lineNo">The specified line constraint.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private static bool LinearProgram1(IList <Line> lines, int lineNo, float radius, Vector2 optVelocity, bool directionOpt, ref Vector2 result)
        {
            float dotProduct   = lines[lineNo].Point * lines[lineNo].Direction;
            float discriminant = RVOMath.Sqr(dotProduct) + RVOMath.Sqr(radius) - RVOMath.AbsSq(lines[lineNo].Point);

            if (discriminant < 0.0f)
            {
                /* Max speed circle fully invalidates line lineNo. */
                return(false);
            }

            float sqrtDiscriminant = RVOMath.Sqrt(discriminant);
            float tLeft            = -dotProduct - sqrtDiscriminant;
            float tRight           = -dotProduct + sqrtDiscriminant;

            for (int i = 0; i < lineNo; ++i)
            {
                float denominator = RVOMath.Det(lines[lineNo].Direction, lines[i].Direction);
                float numerator   = RVOMath.Det(lines[i].Direction, lines[lineNo].Point - lines[i].Point);

                if (RVOMath.Fabs(denominator) <= RVOMath.RvoEpsilon)
                {
                    /* Lines lineNo and i are (almost) parallel. */
                    if (numerator < 0.0f)
                    {
                        return(false);
                    }

                    continue;
                }

                float t = numerator / denominator;

                if (denominator >= 0.0f)
                {
                    /* Line i bounds line lineNo on the right. */
                    tRight = Math.Min(tRight, t);
                }
                else
                {
                    /* Line i bounds line lineNo on the left. */
                    tLeft = Math.Max(tLeft, t);
                }

                if (tLeft > tRight)
                {
                    return(false);
                }
            }

            if (directionOpt)
            {
                /* Optimize direction. */
                if (optVelocity * lines[lineNo].Direction > 0.0f)
                {
                    /* Take right extreme. */
                    result = lines[lineNo].Point + tRight * lines[lineNo].Direction;
                }
                else
                {
                    /* Take left extreme. */
                    result = lines[lineNo].Point + tLeft * lines[lineNo].Direction;
                }
            }
            else
            {
                /* Optimize closest point. */
                float t = lines[lineNo].Direction * (optVelocity - lines[lineNo].Point);

                if (t < tLeft)
                {
                    result = lines[lineNo].Point + tLeft * lines[lineNo].Direction;
                }
                else if (t > tRight)
                {
                    result = lines[lineNo].Point + tRight * lines[lineNo].Direction;
                }
                else
                {
                    result = lines[lineNo].Point + t * lines[lineNo].Direction;
                }
            }

            return(true);
        }