Ejemplo n.º 1
0
 public void AllocateMemoryForLSTMCells()
 {
     cell = new LSTMCell[LayerSize];
     for (int i = 0; i < LayerSize; i++)
     {
         cell[i] = new LSTMCell();
     }
 }
Ejemplo n.º 2
0
 public LSTMLayer(LSTMLayerConfig config) : base(config)
 {
     this.config = config;
     LSTMCells   = new LSTMCell[LayerSize];
     for (var i = 0; i < LayerSize; i++)
     {
         LSTMCells[i] = new LSTMCell();
     }
 }
Ejemplo n.º 3
0
        private void InitializeLSTMCell(LSTMCell c, LSTMCellWeight cw, LSTMCellWeightDeri deri)
        {
            c.cellState = 0;

            //partial derivatives
            deri.dSWPeepholeIn     = 0;
            deri.dSWPeepholeForget = 0;

            deri.dSWCellIn     = 0;
            deri.dSWCellForget = 0;
            deri.dSWCellState  = 0;
        }
Ejemplo n.º 4
0
        private void InitializeLSTMCell(LSTMCell c)
        {
            c.previousCellState = 0;
            c.cellState         = 0;

            //partial derivatives
            c.dSWPeepholeIn     = 0;
            c.dSWPeepholeForget = 0;

            c.dSWCellIn     = 0;
            c.dSWCellForget = 0;
            c.dSWCellState  = 0;
        }
Ejemplo n.º 5
0
 public void Set(LSTMCell cell)
 {
     previousCellState  = cell.previousCellState;
     previousCellOutput = cell.previousCellOutput;
     cellState          = cell.cellState;
     netCellState       = cell.netCellState;
     netForget          = cell.netForget;
     netIn      = cell.netIn;
     netOut     = cell.netOut;
     yCellState = cell.yCellState;
     yForget    = cell.yForget;
     yIn        = cell.yIn;
     yOut       = cell.yOut;
 }
Ejemplo n.º 6
0
        public void LSTMCellInit(LSTMCell c)
        {
            c.previousCellState = 0;
            c.cellState         = 0;

            //partial derivatives
            c.dSWPeepholeIn     = 0;
            c.dSWPeepholeForget = 0;
            //  c.dSWCellState = 0;

            c.dSWCellIn     = 0;
            c.dSWCellForget = 0;
            c.dSWCellState  = 0;
        }
Ejemplo n.º 7
0
        private void CreateCell(BinaryReader br)
        {
            neuFeatures = null;
            OutputLayer = new SimpleLayer(L2);

            neuHidden = new LSTMCell[L1];
            for (int i = 0; i < L1; i++)
            {
                neuHidden[i] = new LSTMCell();
                LSTMCellInit(neuHidden[i], i == L1 - 1);
            }

            if (br != null)
            {
                //Load weight from input file
                for (int i = 0; i < L1; i++)
                {
                    neuHidden[i].wPeepholeIn     = br.ReadDouble();
                    neuHidden[i].wPeepholeForget = br.ReadDouble();
                    neuHidden[i].wPeepholeOut    = br.ReadDouble();

                    neuHidden[i].wCellIn     = br.ReadDouble();
                    neuHidden[i].wCellForget = br.ReadDouble();
                    neuHidden[i].wCellState  = br.ReadDouble();
                    neuHidden[i].wCellOut    = br.ReadDouble();
                }
            }
            else
            {
                //Initialize weight by random number
                for (int i = 0; i < L1; i++)
                {
                    //internal weights, also important
                    neuHidden[i].wPeepholeIn     = RandInitWeight();
                    neuHidden[i].wPeepholeForget = RandInitWeight();
                    neuHidden[i].wPeepholeOut    = RandInitWeight();

                    neuHidden[i].wCellIn     = RandInitWeight();
                    neuHidden[i].wCellForget = RandInitWeight();
                    neuHidden[i].wCellState  = RandInitWeight();
                    neuHidden[i].wCellOut    = RandInitWeight();
                }
            }
        }
Ejemplo n.º 8
0
        public void LSTMCellInit(LSTMCell c, bool bBias = false)
        {
            c.previousCellState = 0;
            c.cellState         = 0;

            //partial derivatives
            c.dSWPeepholeIn     = 0;
            c.dSWPeepholeForget = 0;
            //  c.dSWCellState = 0;

            c.dSWCellIn     = 0;
            c.dSWCellForget = 0;
            c.dSWCellState  = 0;

            if (bBias == false)
            {
                //cell output
                c.cellOutput = 0;
            }
            else
            {
                c.cellOutput = 1.0;
            }
        }
Ejemplo n.º 9
0
        // forward process. output layer consists of tag value
        public override void computeHiddenLayer(State state, bool isTrain = true)
        {
            //inputs(t) -> hidden(t)
            //Get sparse feature and apply it into hidden layer
            var sparse            = state.SparseData;
            int sparseFeatureSize = sparse.Count;

            Parallel.For(0, L1 - 1, parallelOption, j =>
            {
                LSTMCell cell_j = neuHidden[j];

                //hidden(t-1) -> hidden(t)
                cell_j.previousCellState  = cell_j.cellState;
                cell_j.previousCellOutput = cell_j.cellOutput;

                Vector4 vecCell_j = Vector4.Zero;
                //Apply sparse weights
                Vector4[] weights = input2hidden[j];
                for (int i = 0; i < sparseFeatureSize; i++)
                {
                    var entry  = sparse.GetEntry(i);
                    vecCell_j += weights[entry.Key] * entry.Value;
                }

                //Apply dense weights
                if (DenseFeatureSize > 0)
                {
                    weights = feature2hidden[j];
                    for (int i = 0; i < DenseFeatureSize; i++)
                    {
                        vecCell_j += weights[i] * neuFeatures[i];
                    }
                }

                //rest the value of the net input to zero
                cell_j.netIn     = vecCell_j.X;
                cell_j.netForget = vecCell_j.Y;
                //reset each netCell state to zero
                cell_j.netCellState = vecCell_j.Z;
                //reset each netOut to zero
                cell_j.netOut = vecCell_j.W;

                //include internal connection multiplied by the previous cell state
                cell_j.netIn += cell_j.previousCellState * cell_j.wPeepholeIn + cell_j.previousCellOutput * cell_j.wCellIn;
                //squash input
                cell_j.yIn = Sigmoid(cell_j.netIn);

                //include internal connection multiplied by the previous cell state
                cell_j.netForget += cell_j.previousCellState * cell_j.wPeepholeForget + cell_j.previousCellOutput * cell_j.wCellForget;
                cell_j.yForget    = Sigmoid(cell_j.netForget);

                cell_j.netCellState += cell_j.previousCellOutput * cell_j.wCellState;
                cell_j.yCellState    = TanH(cell_j.netCellState);

                if (cell_j.mask == true)
                {
                    cell_j.cellState = 0;
                }
                else
                {
                    //cell state is equal to the previous cell state multipled by the forget gate and the cell inputs multiplied by the input gate
                    cell_j.cellState = cell_j.yForget * cell_j.previousCellState + cell_j.yIn * cell_j.yCellState;
                }

                if (isTrain == false)
                {
                    cell_j.cellState = cell_j.cellState * (1.0 - Dropout);
                }

                ////include the internal connection multiplied by the CURRENT cell state
                cell_j.netOut += cell_j.cellState * cell_j.wPeepholeOut + cell_j.previousCellOutput * cell_j.wCellOut;

                //squash output gate
                cell_j.yOut = Sigmoid(cell_j.netOut);

                cell_j.cellOutput = TanH(cell_j.cellState) * cell_j.yOut;

                neuHidden[j] = cell_j;
            });
        }
Ejemplo n.º 10
0
        public override void LearnNet(State state, int numStates, int curState)
        {
            //Get sparse feature and apply it into hidden layer
            var sparse            = state.SparseData;
            int sparseFeatureSize = sparse.Count;

            //put variables for derivaties in weight class and cell class
            Parallel.For(0, L1 - 1, parallelOption, i =>
            {
                LSTMCell c = neuHidden[i];

                //using the error find the gradient of the output gate
                var gradientOutputGate = (float)(SigmoidDerivative(c.netOut) * TanH(c.cellState) * c.er);

                //internal cell state error
                var cellStateError = (float)(c.yOut * c.er * TanHDerivative(c.cellState));

                Vector4 vecErr = new Vector4(cellStateError, cellStateError, cellStateError, gradientOutputGate);

                var Sigmoid2_ci_netCellState_mul_SigmoidDerivative_ci_netIn = TanH(c.netCellState) * SigmoidDerivative(c.netIn);
                var ci_previousCellState_mul_SigmoidDerivative_ci_netForget = c.previousCellState * SigmoidDerivative(c.netForget);
                var Sigmoid2Derivative_ci_netCellState_mul_ci_yIn           = TanHDerivative(c.netCellState) * c.yIn;

                Vector3 vecDerivate = new Vector3(
                    (float)(Sigmoid2_ci_netCellState_mul_SigmoidDerivative_ci_netIn),
                    (float)(ci_previousCellState_mul_SigmoidDerivative_ci_netForget),
                    (float)(Sigmoid2Derivative_ci_netCellState_mul_ci_yIn));
                float c_yForget = (float)c.yForget;


                Vector4[] w_i   = input2hidden[i];
                Vector3[] wd_i  = input2hiddenDeri[i];
                Vector4[] wlr_i = Input2HiddenLearningRate[i];
                for (int k = 0; k < sparseFeatureSize; k++)
                {
                    var entry = sparse.GetEntry(k);

                    Vector3 wd = vecDerivate * entry.Value;
                    if (curState > 0)
                    {
                        //Adding historical information
                        wd += wd_i[entry.Key] * c_yForget;
                    }
                    wd_i[entry.Key] = wd;

                    //Computing final err delta
                    Vector4 vecDelta = new Vector4(wd, entry.Value);
                    vecDelta         = vecErr * vecDelta;
                    vecDelta         = Vector4.Clamp(vecDelta, vecMinGrad, vecMaxGrad);

                    //Computing actual learning rate
                    Vector4 vecLearningRate = ComputeLearningRate(vecDelta, ref wlr_i[entry.Key]);
                    w_i[entry.Key]         += vecLearningRate * vecDelta;
                }

                if (DenseFeatureSize > 0)
                {
                    w_i   = feature2hidden[i];
                    wd_i  = feature2hiddenDeri[i];
                    wlr_i = Feature2HiddenLearningRate[i];
                    for (int j = 0; j < DenseFeatureSize; j++)
                    {
                        float feature = neuFeatures[j];

                        Vector3 wd = vecDerivate * feature;
                        if (curState > 0)
                        {
                            //Adding historical information
                            wd += wd_i[j] * c_yForget;
                        }
                        wd_i[j] = wd;

                        Vector4 vecDelta = new Vector4(wd, feature);
                        vecDelta         = vecErr * vecDelta;
                        vecDelta         = Vector4.Clamp(vecDelta, vecMinGrad, vecMaxGrad);

                        //Computing actual learning rate
                        Vector4 vecLearningRate = ComputeLearningRate(vecDelta, ref wlr_i[j]);
                        w_i[j] += vecLearningRate * vecDelta;
                    }
                }

                //Update peephols weights

                //partial derivatives for internal connections
                c.dSWPeepholeIn = c.dSWPeepholeIn * c.yForget + Sigmoid2_ci_netCellState_mul_SigmoidDerivative_ci_netIn * c.previousCellState;

                //partial derivatives for internal connections, initially zero as dS is zero and previous cell state is zero
                c.dSWPeepholeForget = c.dSWPeepholeForget * c.yForget + ci_previousCellState_mul_SigmoidDerivative_ci_netForget * c.previousCellState;

                //update internal weights
                Vector3 vecCellDelta = new Vector3((float)c.dSWPeepholeIn, (float)c.dSWPeepholeForget, (float)c.cellState);
                Vector3 vecErr3      = new Vector3(cellStateError, cellStateError, gradientOutputGate);

                vecCellDelta = vecErr3 * vecCellDelta;

                //Normalize err by gradient cut-off
                vecCellDelta = Vector3.Clamp(vecCellDelta, vecMinGrad3, vecMaxGrad3);

                //Computing actual learning rate
                Vector3 vecCellLearningRate = ComputeLearningRate(vecCellDelta, ref PeepholeLearningRate[i]);

                vecCellDelta = vecCellLearningRate * vecCellDelta;

                c.wPeepholeIn     += vecCellDelta.X;
                c.wPeepholeForget += vecCellDelta.Y;
                c.wPeepholeOut    += vecCellDelta.Z;



                //Update cells weights
                //partial derivatives for internal connections
                c.dSWCellIn = c.dSWCellIn * c.yForget + Sigmoid2_ci_netCellState_mul_SigmoidDerivative_ci_netIn * c.previousCellOutput;

                //partial derivatives for internal connections, initially zero as dS is zero and previous cell state is zero
                c.dSWCellForget = c.dSWCellForget * c.yForget + ci_previousCellState_mul_SigmoidDerivative_ci_netForget * c.previousCellOutput;

                c.dSWCellState = c.dSWCellState * c.yForget + Sigmoid2Derivative_ci_netCellState_mul_ci_yIn * c.previousCellOutput;

                Vector4 vecCellDelta4 = new Vector4((float)c.dSWCellIn, (float)c.dSWCellForget, (float)c.dSWCellState, (float)c.previousCellOutput);
                vecCellDelta4         = vecErr * vecCellDelta4;

                //Normalize err by gradient cut-off
                vecCellDelta4 = Vector4.Clamp(vecCellDelta4, vecMinGrad, vecMaxGrad);

                //Computing actual learning rate
                Vector4 vecCellLearningRate4 = ComputeLearningRate(vecCellDelta4, ref CellLearningRate[i]);

                vecCellDelta4 = vecCellLearningRate4 * vecCellDelta4;

                c.wCellIn     += vecCellDelta4.X;
                c.wCellForget += vecCellDelta4.Y;
                c.wCellState  += vecCellDelta4.Z;
                c.wCellOut    += vecCellDelta4.W;


                neuHidden[i] = c;
            });
        }
Ejemplo n.º 11
0
        private void CreateHiddenLayerCells(BinaryReader br)
        {
            neuHidden = new LSTMCell[L1 + 1];

            for (int i = 0; i < L1; i++)
            {
                neuHidden[i] = new LSTMCell();
                LSTMCellInit(NORMAL, neuHidden[i]);
            }
            neuHidden[L1] = new LSTMCell();
            LSTMCellInit(BIAS, neuHidden[L1]);

            if (br != null)
            {
                //Load weight from input file
                for (int i = 0; i < L1 + 1; i++)
                {
                    neuHidden[i].wCellIn = br.ReadDouble();
                    neuHidden[i].wCellForget = br.ReadDouble();
                    neuHidden[i].wCellOut = br.ReadDouble();
                }
            }
            else
            {
                //Initialize weight by random number
                double internalRand = 1 / Math.Sqrt(3);
                for (int i = 0; i < L1; i++)
                {
                    //internal weights, also important
                    neuHidden[i].wCellIn = (((double)((rand() % 100) + 1) / 100) * 2 * internalRand) - internalRand;
                    neuHidden[i].wCellForget = (((double)((rand() % 100) + 1) / 100) * 2 * internalRand) - internalRand;
                    neuHidden[i].wCellOut = (((double)((rand() % 100) + 1) / 100) * 2 * internalRand) - internalRand;
                }

                //internal weights
                neuHidden[L1].wCellIn = 0;
                neuHidden[L1].wCellForget = 0;
                neuHidden[L1].wCellOut = 0;
            }
        }
Ejemplo n.º 12
0
        private void CreateCell(BinaryReader br)
        {
            neuFeatures = new SingleVector(DenseFeatureSize);
            OutputLayer = new neuron[L2];

            for (int a = 0; a < L2; a++)
            {
                OutputLayer[a].cellOutput = 0;
                OutputLayer[a].er = 0;
            }

            neuHidden = new LSTMCell[L1];
            for (int i = 0; i < L1; i++)
            {
                neuHidden[i] = new LSTMCell();
                LSTMCellInit(neuHidden[i]);
            }

            if (br != null)
            {
                //Load weight from input file
                for (int i = 0; i < L1; i++)
                {
                    neuHidden[i].wCellIn = br.ReadSingle();
                    neuHidden[i].wCellForget = br.ReadSingle();
                    neuHidden[i].wCellOut = br.ReadSingle();
                }
            }
            else
            {
                //Initialize weight by random number
                for (int i = 0; i < L1; i++)
                {
                    //internal weights, also important
                    neuHidden[i].wCellIn = RandInitWeight();
                    neuHidden[i].wCellForget = RandInitWeight();
                    neuHidden[i].wCellOut = RandInitWeight();
                }
            }
        }
Ejemplo n.º 13
0
        public void LSTMCellInit(bool type, LSTMCell c)
        {
            //input gate
            c.netIn = 0;
            c.yIn = 0;

            //forget gate
            c.netForget = 0;
            c.yForget = 0;

            //cell state
            c.netCellState = 0;
            c.previousCellState = 0; //this is important
            c.cellState = 0;
            c.cellStateError = 0;

            //partial derivatives
            c.dSWCellIn = 0;
            c.dSWCellForget = 0;

            //output gate
            c.netOut = 0;
            c.yOut = 0;
            c.gradientOutputGate = 0;

            //cell output
            c.cellOutput = (type == true) ? 0 : -1;
        }
Ejemplo n.º 14
0
        // forward process. output layer consists of tag value
        public override void computeLayer(SparseVector sparseFeature, double[] denseFeature, bool isTrain = true)
        {
            //inputs(t) -> hidden(t)
            //Get sparse feature and apply it into hidden layer
            SparseFeature = sparseFeature;
            DenseFeature  = denseFeature;

            Parallel.For(0, LayerSize, parallelOption, j =>
            {
                LSTMCell cell_j = cell[j];

                //hidden(t-1) -> hidden(t)
                cell_j.previousCellState = cell_j.cellState;
                previousCellOutput[j]    = cellOutput[j];

                Vector4 vecCell_j = Vector4.Zero;

                if (SparseFeatureSize > 0)
                {
                    //Apply sparse weights
                    Vector4[] weights = input2hidden[j];
                    for (int i = 0; i < SparseFeature.Count; i++)
                    {
                        var entry  = SparseFeature.GetEntry(i);
                        vecCell_j += weights[entry.Key] * entry.Value;
                    }
                }

                //Apply dense weights
                if (DenseFeatureSize > 0)
                {
                    Vector4[] weights = feature2hidden[j];
                    for (int i = 0; i < DenseFeatureSize; i++)
                    {
                        vecCell_j += weights[i] * (float)DenseFeature[i];
                    }
                }

                //rest the value of the net input to zero
                cell_j.netIn     = vecCell_j.X;
                cell_j.netForget = vecCell_j.Y;
                //reset each netCell state to zero
                cell_j.netCellState = vecCell_j.Z;
                //reset each netOut to zero
                cell_j.netOut = vecCell_j.W;

                double cell_j_previousCellOutput = previousCellOutput[j];

                //include internal connection multiplied by the previous cell state
                cell_j.netIn += cell_j.previousCellState * cell_j.wPeepholeIn + cell_j_previousCellOutput * cell_j.wCellIn;
                //squash input
                cell_j.yIn = Sigmoid(cell_j.netIn);

                //include internal connection multiplied by the previous cell state
                cell_j.netForget += cell_j.previousCellState * cell_j.wPeepholeForget + cell_j_previousCellOutput * cell_j.wCellForget;
                cell_j.yForget    = Sigmoid(cell_j.netForget);

                cell_j.netCellState += cell_j_previousCellOutput * cell_j.wCellState;
                cell_j.yCellState    = TanH(cell_j.netCellState);

                //cell state is equal to the previous cell state multipled by the forget gate and the cell inputs multiplied by the input gate
                cell_j.cellState = cell_j.yForget * cell_j.previousCellState + cell_j.yIn * cell_j.yCellState;

                ////include the internal connection multiplied by the CURRENT cell state
                cell_j.netOut += cell_j.cellState * cell_j.wPeepholeOut + cell_j_previousCellOutput * cell_j.wCellOut;

                //squash output gate
                cell_j.yOut = Sigmoid(cell_j.netOut);

                cellOutput[j] = TanH(cell_j.cellState) * cell_j.yOut;

                cell[j] = cell_j;
            });
        }
Ejemplo n.º 15
0
 public void AllocateMemoryForLSTMCells()
 {
     cell = new LSTMCell[LayerSize];
     for (int i = 0; i < LayerSize; i++)
     {
         cell[i] = new LSTMCell();
     }
 }
Ejemplo n.º 16
0
        public void LSTMCellInit(LSTMCell c)
        {
            c.previousCellState = 0;
            c.cellState = 0;

            //partial derivatives
            c.dSWPeepholeIn = 0;
            c.dSWPeepholeForget = 0;
            //  c.dSWCellState = 0;

            c.dSWCellIn = 0;
            c.dSWCellForget = 0;
            c.dSWCellState = 0;
        }
Ejemplo n.º 17
0
 public LSTMCell(LSTMCell cell)
 {
     Set(cell);
 }
Ejemplo n.º 18
0
 public void matrixXvectorADD(neuron[] dest, LSTMCell[] srcvec, Matrix srcmatrix, int from, int to, int from2, int to2)
 {
     //ac mod
     Parallel.For(0, (to - from), parallelOption, i =>
     {
         for (int j = 0; j < to2 - from2; j++)
         {
             dest[i + from].ac += srcvec[j + from2].cellOutput * srcmatrix[j][i];
         }
     });
 }
Ejemplo n.º 19
0
 public void matrixXvectorADD(LSTMCell[] dest, neuron[] srcvec, LSTMWeight[][] srcmatrix, int from, int to, int from2, int to2)
 {
     //ac mod
     Parallel.For(0, (to - from), parallelOption, i =>
     {
         for (int j = 0; j < to2 - from2; j++)
         {
             dest[i + from].netIn += srcvec[j + from2].ac * srcmatrix[i][j].wInputInputGate;
         }
     });
 }
Ejemplo n.º 20
0
        public void LSTMCellInit(LSTMCell c)
        {
            //input gate
            c.netIn = 0;
            c.yIn = 0;

            //forget gate
            c.netForget = 0;
            c.yForget = 0;

            //cell state
            c.netCellState = 0;
            c.previousCellState = 0; //this is important
            c.cellState = 0;

            //partial derivatives
            c.dSWCellIn = 0;
            c.dSWCellForget = 0;

            //output gate
            c.netOut = 0;
            c.yOut = 0;

            //cell output
            c.cellOutput = 0;
        }