Ejemplo n.º 1
0
        OptionletVolatilityStructure makeCapVolCurve(Date todaysDate) 
        {
            double[] vols = {14.40, 17.15, 16.81, 16.64, 16.17,
                                 15.78, 15.40, 15.21, 14.86};

            List<Date> dates=new List<Date>() ;
            List<double> capletVols=new List<double>();
            LiborForwardModelProcess process=
                                   new LiborForwardModelProcess(10, makeIndex());

            for (int i=0; i < 9; ++i) {
                capletVols.Add(vols[i]/100);
                dates.Add(process.fixingDates()[i+1]);
            }

            return new CapletVarianceCurve(todaysDate, dates,
                                           capletVols,new Actual360());
        }
Ejemplo n.º 2
0
        // calculating swaption volatility matrix using
        // Rebonatos approx. formula. Be aware that this
        // matrix is valid only for regular fixings and
        // assumes that the fix and floating leg have the
        // same frequency
        public SwaptionVolatilityMatrix getSwaptionVolatilityMatrix()
        {
            if (swaptionVola != null)
            {
                return(swaptionVola);
            }

            IborIndex index = process_.index();
            Date      today = process_.fixingDates()[0];

            int    size         = process_.size() / 2;
            Matrix volatilities = new Matrix(size, size);

            List <Date> exercises = new InitializedList <Date>(size);

            for (int i = 0; i < size; ++i)
            {
                exercises[i] = process_.fixingDates()[i + 1];
            }

            List <Period> lengths = new InitializedList <Period>(size);

            for (int i = 0; i < size; ++i)
            {
                lengths[i] = (i + 1) * index.tenor();
            }

            Vector f = process_.initialValues();

            for (int k = 0; k < size; ++k)
            {
                int    alpha   = k;
                double t_alpha = process_.fixingTimes()[alpha + 1];

                Matrix var = new Matrix(size, size);
                for (int i = alpha + 1; i <= k + size; ++i)
                {
                    for (int j = i; j <= k + size; ++j)
                    {
                        var[i - alpha - 1, j - alpha - 1] = var[j - alpha - 1, i - alpha - 1] =
                            covarProxy_.integratedCovariance(i, j, t_alpha, null);
                    }
                }

                for (int l = 1; l <= size; ++l)
                {
                    int    beta = l + k;
                    Vector w    = w_0(alpha, beta);

                    double sum = 0.0;
                    for (int i = alpha + 1; i <= beta; ++i)
                    {
                        for (int j = alpha + 1; j <= beta; ++j)
                        {
                            sum += w[i] * w[j] * f[i] * f[j] * var[i - alpha - 1, j - alpha - 1];
                        }
                    }
                    volatilities[k, l - 1] =
                        Math.Sqrt(sum / t_alpha) / S_0(alpha, beta);
                }
            }

            return(swaptionVola = new SwaptionVolatilityMatrix(today, exercises, lengths,
                                                               volatilities, index.dayCounter()));
        }
Ejemplo n.º 3
0
        CapletVarianceCurve makeCapVolCurve(Date todaysDate)
        {
            double[] vols = {14.40, 17.15, 16.81, 16.64, 16.17,
                             15.78, 15.40, 15.21, 14.86, 14.54};

            List<Date> dates = new List<Date>();
            List<double> capletVols = new List<double>();
            LiborForwardModelProcess process= new LiborForwardModelProcess(len+1, makeIndex(),null);

            for (int i=0; i < len; ++i)
            {
                capletVols.Add(vols[i]/100);
                dates.Add(process.fixingDates()[i+1]);
            }

            return new CapletVarianceCurve( todaysDate, dates,
                                            capletVols, new ActualActual());
        }
Ejemplo n.º 4
0
        public void testSwaptionPricing()
        {
            //"Testing forward swap and swaption pricing...");

            //SavedSettings backup;

            const int size  = 10;
            const int steps = 8*size;
            #if QL_USE_INDEXED_COUPON
            const double tolerance = 1e-6;
            #else
            const double tolerance = 1e-12;
            #endif

            List<Date> dates = new List<Date>();
            List<double> rates = new List<double>();
            dates.Add(new Date(4,9,2005));
            dates.Add(new Date(4,9,2011));
            rates.Add(0.04);
            rates.Add(0.08);

            IborIndex index = makeIndex(dates, rates);

            LiborForwardModelProcess process = new LiborForwardModelProcess(size, index);

            LmCorrelationModel corrModel = new LmExponentialCorrelationModel(size, 0.5);

            LmVolatilityModel volaModel = new LmLinearExponentialVolatilityModel(process.fixingTimes(),
                                                                                0.291, 1.483, 0.116, 0.00001);

               // set-up pricing engine
            process.setCovarParam((LfmCovarianceParameterization)
                                       new LfmCovarianceProxy(volaModel, corrModel));

            // set-up a small Monte-Carlo simulation to price swations
            List<double> tmp = process.fixingTimes();

            TimeGrid grid=new TimeGrid(tmp ,steps);

            List<int> location=new List<int>();
            for (int i=0; i < tmp.Count; ++i) {
                location.Add(grid.index(tmp[i])) ;
            }

            ulong seed=42;
            const int nrTrails = 5000;
            LowDiscrepancy.icInstance = new InverseCumulativeNormal();

            IRNG rsg = (InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>
                                                                    ,InverseCumulativeNormal>)
            new PseudoRandom().make_sequence_generator(process.factors()*(grid.size()-1),seed);

            MultiPathGenerator<IRNG> generator=new MultiPathGenerator<IRNG>(process,
                                                                            grid,
                                                                            rsg, false);

            LiborForwardModel liborModel = new LiborForwardModel(process, volaModel, corrModel);

            Calendar calendar = index.fixingCalendar();
            DayCounter dayCounter = index.forwardingTermStructure().link.dayCounter();
            BusinessDayConvention convention = index.businessDayConvention();

            Date settlement = index.forwardingTermStructure().link.referenceDate();

            SwaptionVolatilityMatrix m = liborModel.getSwaptionVolatilityMatrix();

            for (int i=1; i < size; ++i) {
                for (int j=1; j <= size-i; ++j) {
                    Date fwdStart    = settlement + new Period(6*i, TimeUnit.Months);
                    Date fwdMaturity = fwdStart + new Period(6*j, TimeUnit.Months);

                    Schedule schedule =new Schedule(fwdStart, fwdMaturity, index.tenor(), calendar,
                                       convention, convention, DateGeneration.Rule.Forward, false);

                    double swapRate  = 0.0404;
                    VanillaSwap forwardSwap = new VanillaSwap(VanillaSwap.Type.Receiver, 1.0,
                                                                schedule, swapRate, dayCounter,
                                                                schedule, index, 0.0, index.dayCounter());
                    forwardSwap.setPricingEngine(new DiscountingSwapEngine(index.forwardingTermStructure()));

                    // check forward pricing first
                    double expected = forwardSwap.fairRate();
                    double calculated = liborModel.S_0(i-1,i+j-1);

                    if (Math.Abs(expected - calculated) > tolerance)
                        Assert.Fail("Failed to reproduce fair forward swap rate"
                                    + "\n    calculated: " + calculated
                                    + "\n    expected:   " + expected);

                    swapRate = forwardSwap.fairRate();
                    forwardSwap =
                        new VanillaSwap(VanillaSwap.Type.Receiver, 1.0,
                                        schedule, swapRate, dayCounter,
                                        schedule, index, 0.0, index.dayCounter());
                    forwardSwap.setPricingEngine(new DiscountingSwapEngine(index.forwardingTermStructure()));

                    if (i == j && i<=size/2) {
                        IPricingEngine engine =
                            new LfmSwaptionEngine(liborModel, index.forwardingTermStructure());
                        Exercise exercise =
                            new EuropeanExercise(process.fixingDates()[i]);

                        Swaption swaption =
                            new Swaption(forwardSwap, exercise);
                        swaption.setPricingEngine(engine);

                        GeneralStatistics stat = new GeneralStatistics();

                        for (int n=0; n<nrTrails; ++n) {
                            Sample<MultiPath> path = (n%2!=0) ? generator.antithetic()
                                                     : generator.next();

                            //Sample<MultiPath> path = generator.next();
                            List<double> rates_ = new InitializedList<double>(size);
                            for (int k=0; k<process.size(); ++k) {
                                rates_[k] = path.value[k][location[i]];
                            }
                            List<double> dis = process.discountBond(rates_);

                            double npv=0.0;
                            for (int k=i; k < i+j; ++k) {
                                npv += (swapRate - rates_[k])
                                       * (  process.accrualEndTimes()[k]
                                          - process.accrualStartTimes()[k])*dis[k];
                            }
                            stat.add(Math.Max(npv, 0.0));
                        }

                        if (Math.Abs(swaption.NPV() - stat.mean())
                            > stat.errorEstimate()*2.35)
                            Assert.Fail("Failed to reproduce swaption npv"
                                        + "\n    calculated: " + stat.mean()
                                        + "\n    expected:   " + swaption.NPV());
                    }
                }
            }
        }
Ejemplo n.º 5
0
        public LfmHullWhiteParameterization(
            LiborForwardModelProcess process,
            OptionletVolatilityStructure capletVol,
            Matrix correlation, int factors)
            : base(process.size(), factors)
        {
            diffusion_   = new Matrix(size_ - 1, factors_);
            fixingTimes_ = process.fixingTimes();

            Matrix sqrtCorr = new Matrix(size_ - 1, factors_, 1.0);

            if (correlation.empty())
            {
                if (!(factors_ == 1))
                {
                    throw new ApplicationException("correlation matrix must be given for " +
                                                   "multi factor models");
                }
            }
            else
            {
                if (!(correlation.rows() == size_ - 1 &&
                      correlation.rows() == correlation.columns()))
                {
                    throw new ApplicationException("wrong dimesion of the correlation matrix");
                }

                if (!(factors_ <= size_ - 1))
                {
                    throw new ApplicationException("too many factors for given LFM process");
                }

                Matrix tmpSqrtCorr = MatrixUtilitites.pseudoSqrt(correlation,
                                                                 MatrixUtilitites.SalvagingAlgorithm.Spectral);

                // reduce to n factor model
                // "Reconstructing a valid correlation matrix from invalid data"
                // (<http://www.quarchome.org/correlationmatrix.pdf>)
                for (int i = 0; i < size_ - 1; ++i)
                {
                    double d = 0;
                    tmpSqrtCorr.row(i).GetRange(0, factors_).ForEach((ii, vv) => d += vv * tmpSqrtCorr.row(i)[ii]);
                    //sqrtCorr.row(i).GetRange(0, factors_).ForEach((ii, vv) => sqrtCorr.row(i)[ii] = tmpSqrtCorr.row(i).GetRange(0, factors_)[ii] / Math.Sqrt(d));
                    for (int k = 0; k < factors_; ++k)
                    {
                        sqrtCorr[i, k] = tmpSqrtCorr.row(i).GetRange(0, factors_)[k] / Math.Sqrt(d);
                    }
                }
            }
            List <double> lambda      = new List <double>();
            DayCounter    dayCounter  = process.index().dayCounter();
            List <double> fixingTimes = process.fixingTimes();
            List <Date>   fixingDates = process.fixingDates();

            for (int i = 1; i < size_; ++i)
            {
                double cumVar = 0.0;
                for (int j = 1; j < i; ++j)
                {
                    cumVar += lambda[i - j - 1] * lambda[i - j - 1]
                              * (fixingTimes[j + 1] - fixingTimes[j]);
                }

                double vol = capletVol.volatility(fixingDates[i], 0.0, false);
                double var = vol * vol
                             * capletVol.dayCounter().yearFraction(fixingDates[0],
                                                                   fixingDates[i]);
                lambda.Add(Math.Sqrt((var - cumVar)
                                     / (fixingTimes[1] - fixingTimes[0])));
                for (int q = 0; q < factors_; ++q)
                {
                    diffusion_[i - 1, q] = sqrtCorr[i - 1, q] * lambda.Last();
                }
            }
            covariance_ = diffusion_ * Matrix.transpose(diffusion_);
        }
Ejemplo n.º 6
0
        public LfmHullWhiteParameterization(
                LiborForwardModelProcess process,
                OptionletVolatilityStructure capletVol,
                Matrix correlation, int factors)
            : base(process.size(), factors)
        {
            diffusion_  = new Matrix(size_-1, factors_);
            fixingTimes_= process.fixingTimes();

            Matrix sqrtCorr = new Matrix(size_ - 1, factors_, 1.0);
            if (correlation.empty()) {
                if(!(factors_ == 1))
                    throw new ApplicationException("correlation matrix must be given for "+
                                                    "multi factor models");
            } else {
                if(!(correlation.rows() == size_-1
                   && correlation.rows() == correlation.columns()))
                   throw new ApplicationException("wrong dimesion of the correlation matrix");

                if(!(factors_ <= size_-1))
                    throw new ApplicationException("too many factors for given LFM process");

                Matrix tmpSqrtCorr =MatrixUtilitites.pseudoSqrt(correlation,
                                               MatrixUtilitites.SalvagingAlgorithm.Spectral);

                // reduce to n factor model
                // "Reconstructing a valid correlation matrix from invalid data"
                // (<http://www.quarchome.org/correlationmatrix.pdf>)
                for (int i=0; i < size_-1; ++i) {
                    double d = 0;
                    tmpSqrtCorr.row(i).GetRange(0, factors_).ForEach((ii, vv) => d += vv*tmpSqrtCorr.row(i)[ii]);
                    //sqrtCorr.row(i).GetRange(0, factors_).ForEach((ii, vv) => sqrtCorr.row(i)[ii] = tmpSqrtCorr.row(i).GetRange(0, factors_)[ii] / Math.Sqrt(d));
                    for (int k = 0; k < factors_; ++k){
                        sqrtCorr[i, k] = tmpSqrtCorr.row(i).GetRange(0, factors_)[k] / Math.Sqrt(d);
                    }
                }
            }
            List<double> lambda=new List<double>();
            DayCounter dayCounter = process.index().dayCounter();
            List<double>  fixingTimes = process.fixingTimes();
            List<Date> fixingDates = process.fixingDates();

            for (int i = 1; i < size_; ++i) {
                double cumVar = 0.0;
                for (int j = 1; j < i; ++j) {
                    cumVar +=  lambda[i-j-1] * lambda[i-j-1]
                             * (fixingTimes[j+1] - fixingTimes[j]);
                }

                double vol =  capletVol.volatility(fixingDates[i], 0.0,false);
                double var = vol * vol
                    * capletVol.dayCounter().yearFraction(fixingDates[0],
                                                      fixingDates[i]);
                lambda.Add(Math.Sqrt(  (var - cumVar)
                                       / (fixingTimes[1] - fixingTimes[0])) );
                for (int q=0; q<factors_; ++q) {
                    diffusion_[i - 1, q]=sqrtCorr[i - 1, q] * lambda.Last() ;
                }
            }
            covariance_ = diffusion_ * Matrix.transpose(diffusion_);
        }