Ejemplo n.º 1
0
        private float[,] FindStartingCentersEMD(float[][] data, int k)
        {
            // select random centers
            Console.WriteLine("K-means++ finding good starting centers...");

            // first get some samples of all data to speed up the algorithm
            int maxSamples = Math.Min(k * 20, data.Length);

            float[][] dataTemp = GetUniqueRandomNumbers(data, maxSamples);

            float[,] centers = new float[k, dataTemp[0].Count()];

            // first cluster center is random
            List <int> centerIndices = new List <int>();
            int        index         = -1;

            using (var progress = new ProgressBar())
            {
                progress.Report((double)(1) / k, 1);

                for (int c = 0; c < k; ++c) // get a new cluster center one by one
                {
                    float[] distancesToBestCenter = Enumerable.Repeat(float.MaxValue, dataTemp.Count()).ToArray();

                    if (c == 0)
                    {
                        index = RandomGen.Next(0, dataTemp.Count());
                        centerIndices.Add(index);
                        CopyArray(dataTemp, centers, index, c);

                        continue;
                    }
                    else
                    {
                        Parallel.For(0, Global.NOF_THREADS,
                                     i =>
                        {
                            for (int j = Util.GetWorkItemsIndices(dataTemp.Count(), Global.NOF_THREADS, i).Item1;
                                 j < Util.GetWorkItemsIndices(dataTemp.Count(), Global.NOF_THREADS, i).Item2; ++j)
                            {                               // go through all dataTemp
                                for (int m = 0; m < c; ++m) // go through centers
                                {
                                    float tempDistance = GetEarthMoverDistance(dataTemp, centers, j, m);
                                    if (tempDistance < distancesToBestCenter[j])
                                    {
                                        distancesToBestCenter[j] = tempDistance;
                                    }
                                }
                            }
                        });
                        SquareArray(distancesToBestCenter);
                        float sum = distancesToBestCenter.Sum();
                        for (int p = 0; p < distancesToBestCenter.Count(); ++p)
                        {
                            distancesToBestCenter[p] /= sum;
                        }
                        int centerIndexSample = Util.SampleDistribution(distancesToBestCenter);
                        while (centerIndices.Contains(centerIndexSample))
                        {
                            centerIndexSample = Util.SampleDistribution(distancesToBestCenter);
                        }
                        CopyArray(dataTemp, centers, centerIndexSample, c);
                        centerIndices.Add(centerIndexSample);
                    }
                    progress.Report((double)(c + 1) / k, c + 1);
                }
            }
            return(centers);
        }
Ejemplo n.º 2
0
        private static void CalculateOCHSOpponentClusters()
        {
            Console.WriteLine("Calculating {0} opponent clusters for OCHS using Monte Carlo Sampling...", Global.nofOpponentClusters);
            DateTime start = DateTime.UtcNow;

            histogramsPreflop = new float[169][]; // c# doesnt allow more than int max indices (its 2019, bitch pls)
            for (int i = 0; i < 169; ++i)
            {
                histogramsPreflop[i] = new float[Global.preflopHistogramSize];
            }
            long sharedLoopCounter = 0;

            using (var progress = new ProgressBar())
            {
                progress.Report((double)Interlocked.Read(ref sharedLoopCounter) / (169 * Global.nofMCSimsPerPreflopHand), sharedLoopCounter);

                Parallel.For(0, 169,
                             i =>
                {
                    int[] cards = new int[2];
                    Global.indexer_2.unindex(Global.indexer_2.rounds - 1, i, cards);
                    long deadCardMask = (1L << cards[0]) + (1L << cards[1]);
                    for (int steps = 0; steps < Global.nofMCSimsPerPreflopHand; steps++)
                    {
                        int cardFlop1 = RandomGen.Next(0, 52);
                        while (((1L << cardFlop1) & deadCardMask) != 0)
                        {
                            cardFlop1 = RandomGen.Next(0, 52);
                        }
                        deadCardMask |= (1L << cardFlop1);

                        int cardFlop2 = RandomGen.Next(0, 52);
                        while (((1L << cardFlop2) & deadCardMask) != 0)
                        {
                            cardFlop2 = RandomGen.Next(0, 52);
                        }
                        deadCardMask |= (1L << cardFlop2);

                        int cardFlop3 = RandomGen.Next(0, 52);
                        while (((1L << cardFlop3) & deadCardMask) != 0)
                        {
                            cardFlop3 = RandomGen.Next(0, 52);
                        }
                        deadCardMask |= (1L << cardFlop3);

                        int cardTurn = RandomGen.Next(0, 52);
                        while (((1L << cardTurn) & deadCardMask) != 0)
                        {
                            cardTurn = RandomGen.Next(0, 52);
                        }
                        deadCardMask |= (1L << cardTurn);

                        int cardRiver = RandomGen.Next(0, 52);
                        while (((1L << cardRiver) & deadCardMask) != 0)
                        {
                            cardRiver = RandomGen.Next(0, 52);
                        }
                        deadCardMask |= (1L << cardRiver);

                        int[] strength = new int[3];
                        for (int card1Opponent = 0; card1Opponent < 51; card1Opponent++)
                        {
                            if (((1L << card1Opponent) & deadCardMask) != 0)
                            {
                                continue;
                            }
                            deadCardMask |= (1L << card1Opponent);
                            for (int card2Opponent = card1Opponent + 1; card2Opponent < 52; card2Opponent++)
                            {
                                if (((1L << card2Opponent) & deadCardMask) != 0)
                                {
                                    continue;
                                }
                                ulong handSevenCards         = (1uL << cards[0]) + (1uL << cards[1]) + (1uL << cardFlop1) + (1uL << cardFlop2) + (1uL << cardFlop3) + (1uL << cardTurn) + (1uL << cardRiver);
                                ulong handOpponentSevenCards = (1uL << cardFlop1) + (1uL << cardFlop2) + (1uL << cardFlop3) + (1uL << cardTurn) + (1uL << cardRiver) + (1uL << card1Opponent) + (1uL << card2Opponent);

                                int valueSevenCards         = Global.handEvaluator.Evaluate(handSevenCards);
                                int valueOpponentSevenCards = Global.handEvaluator.Evaluate(handOpponentSevenCards);

                                int index = (valueSevenCards > valueOpponentSevenCards ? 0 : valueSevenCards == valueOpponentSevenCards ? 1 : 2);

                                strength[index] += 1;
                            }
                        }
                        float equity = (strength[0] + strength[1] / 2.0f) / (strength[0] + strength[1] + strength[2]);
                        histogramsPreflop[i][(Math.Min(Global.preflopHistogramSize - 1, (int)(equity * (float)Global.preflopHistogramSize)))] += 1;
                        deadCardMask = (1L << cards[0]) + (1L << cards[1]);

                        Interlocked.Add(ref sharedLoopCounter, 1);
                        progress.Report((double)Interlocked.Read(ref sharedLoopCounter) / (169 * Global.nofMCSimsPerPreflopHand), sharedLoopCounter);
                    }
                });
            }
            TimeSpan elapsed = DateTime.UtcNow - start;

            Console.WriteLine("Calculating opponent clusters completed in {0}d {1}h {2}m {3}s", elapsed.Days,
                              elapsed.Hours, elapsed.Minutes, elapsed.Seconds);

            Console.WriteLine("Calculated histograms: ");
            int[] cardsOutput = new int[2];
            for (int i = 0; i < 169; ++i)
            {
                cardsOutput = new int[2];
                Global.indexer_2.unindex(Global.indexer_2.rounds - 1, i, cardsOutput);
                Hand hand = new Hand();
                hand.Cards.Add(new Card(cardsOutput[0]));
                hand.Cards.Add(new Card(cardsOutput[1]));
                hand.PrintColoredCards();
                Console.Write(": ");
                for (int j = 0; j < Global.preflopHistogramSize; ++j)
                {
                    Console.Write(histogramsPreflop[i][j] + " ");
                }
                Console.WriteLine();
            }
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Returns an array where the element at index i contains the cluster entry associated with the entry
        /// </summary>
        /// <param name="data"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        public int[] ClusterEMD(float[][] data, int k, int nofRuns, int[] _bestCenters = null)
        {
            Console.WriteLine("K-means++ (EMD) clustering {0} elements into {1} clusters with {2} runs...", data.Count(), k, nofRuns);
            int      filenameId = RandomGen.Next(0, 10000000);
            DateTime start      = DateTime.UtcNow;

            int[] bestCenters   = new int[data.Count()];
            int[] recordCenters = new int[data.Count()]; // we return indices only, the centers are discarded

            // load previous indices if passed
            bool skipInit = false;

            if (_bestCenters != null)
            {
                skipInit = true;
                Array.Copy(_bestCenters, bestCenters, _bestCenters.Length);
                Array.Copy(_bestCenters, recordCenters, _bestCenters.Length);
            }

            double recordDistance = double.MaxValue;

            for (int run = 0; run < nofRuns; ++run)
            {
                float[,] centers = new float[k, data[0].Count()];

                Console.WriteLine("K-means++ starting clustering...");
                double lastDistance    = double.MaxValue;
                bool   distanceChanged = true;

                if (!skipInit)
                {
                    bestCenters = new int[data.Count()];
                    centers     = FindStartingCentersEMD(data, k);
                }
                else
                {
                    // find new cluster centers // todo: it isnt theoretically sound to take the mean when using EMD distance metric
                    centers  = CalculateNewCenters(data, bestCenters, k);
                    skipInit = false;
                }
                float[,] centerCenterDistances = new float[k, k];

                while (distanceChanged)
                {
                    // calculate cluster-cluster distances to use triangle inequality
                    CalculateClusterDistancesEMD(centerCenterDistances, centers);

                    // find closest cluster for each element
                    long   sharedLoopCounter = 0;
                    double totalDistance     = 0;
                    using (var progress = new ProgressBar())
                    {
                        Parallel.For(0, Global.NOF_THREADS,
                                     i =>
                        {
                            double threadDistance = 0;
                            long iter             = 0;
                            for (int j = Util.GetWorkItemsIndices(data.Length, Global.NOF_THREADS, i).Item1;
                                 j < Util.GetWorkItemsIndices(data.Length, Global.NOF_THREADS, i).Item2; ++j)
                            {  // go through all data
                               // assume previous cluster was good, this is better for the triangle inequality
                                double distance = GetEarthMoverDistance(data, centers, j, bestCenters[j]);
                                int bestIndex   = bestCenters[j];
                                for (int m = 0; m < k; m++)  // go through centers
                                {
                                    if (centerCenterDistances[bestIndex, m] < 2 * distance && bestIndex != m)
                                    {
                                        double tempDistance = GetEarthMoverDistance(data, centers, j, m);
                                        if (tempDistance < distance)
                                        {
                                            distance  = tempDistance;
                                            bestIndex = m;
                                        }
                                    }
                                }
                                bestCenters[j]  = bestIndex;
                                threadDistance += distance;
                                iter++;

                                if (iter % 100000 == 0)
                                {
                                    Interlocked.Add(ref sharedLoopCounter, 100000);
                                    AddDouble(ref totalDistance, threadDistance);
                                    threadDistance = 0;
                                    progress.Report((double)Interlocked.Read(ref sharedLoopCounter) / data.Length, sharedLoopCounter);
                                }
                            }
                            Interlocked.Add(ref sharedLoopCounter, iter % 100000);
                            progress.Report((double)Interlocked.Read(ref sharedLoopCounter) / data.Length, sharedLoopCounter);

                            AddDouble(ref totalDistance, threadDistance);
                        });
                    }

                    centers         = CalculateNewCenters(data, bestCenters, k);
                    totalDistance  /= data.Length;
                    distanceChanged = !(totalDistance == lastDistance);

                    double diff = lastDistance - totalDistance;

                    Console.WriteLine("Saving intermediate table to file...");

                    FileHandler.SaveToFile(recordCenters, "EMDTable_temp_" + filenameId + ".txt");

                    if (totalDistance < recordDistance)
                    {
                        recordDistance = totalDistance;
                        Array.Copy(bestCenters, recordCenters, recordCenters.Length);
                    }

                    Console.WriteLine("Current average distance: {0} Improvement: {1}, {2}%", totalDistance, diff,
                                      100.0 * (1.0 - totalDistance / lastDistance));

                    lastDistance = totalDistance;
                }
            }
            Console.WriteLine("Best distance found: " + recordDistance);
            TimeSpan elapsed = DateTime.UtcNow - start;

            Console.WriteLine("K-means++ clustering (EMD) completed in {0}d {1}h {2}m {3}s", elapsed.Days, elapsed.Hours, elapsed.Minutes, elapsed.Seconds);

            // print starting hand chart
            return(recordCenters);
        }
Ejemplo n.º 4
0
        private static void Train()
        {
            Console.WriteLine("Starting Monte Carlo Counterfactual Regret Minimization (MCCFRM)...");

            long StrategyInterval   = Math.Max(1, 1000 / Global.NOF_THREADS);; // bb rounds before updating player strategy (recursive through tree) 10k
            long PruneThreshold     = 20000000 / Global.NOF_THREADS;           // bb rounds after this time we stop checking all actions, 200 minutes
            long LCFRThreshold      = 20000000 / Global.NOF_THREADS;           // bb rounds when to stop discounting old regrets, no clue what it should be
            long DiscountInterval   = 1000000 / Global.NOF_THREADS;            // bb rounds, discount values periodically but not every round, 10 minutes
            long SaveToDiskInterval = 1000000 / Global.NOF_THREADS;
            long testGamesInterval  = 100000 / Global.NOF_THREADS;

            long sharedLoopCounter = 0;

            LoadFromFile();
            LoadFromFile_d();

            Trainer trainer = new Trainer(0);

            trainer.EnumerateActionSpace();

            Stopwatch stopwatch = new Stopwatch();

            stopwatch.Start();
            Parallel.For(0, Global.NOF_THREADS,
                         index =>
            {
                Trainer trainer = new Trainer(index);

                for (int t = 1; ; t++)     // bb rounds
                {
                    if (t % 1000 == 0)
                    {
                        Interlocked.Add(ref sharedLoopCounter, 1000);
                        Console.WriteLine("Training steps " + sharedLoopCounter);
                    }

                    if (t % testGamesInterval == 0 && index == 0)     // implement progress bar later
                    {
                        trainer.PrintStartingHandsChart();
                        trainer.PrintStatistics(sharedLoopCounter);

                        Console.WriteLine("Sample games (against self)");
                        for (int z = 0; z < 20; z++)
                        {
                            trainer.PlayOneGame();
                        }

                        //Console.WriteLine("Sample games (against baseline)");
                        //float mainScore = 0.0f;
                        //for (int x = 0; x < 100; x++) // 100 games not statistically significant
                        //{
                        //    if (x < 20)
                        //    {
                        //        mainScore += trainer.PlayOneGame_d(x % 2, true);
                        //    }
                        //    mainScore += trainer.PlayOneGame_d(x % 2, false);
                        //}
                        //WritePlotStatistics((mainScore / 10000) / Global.BB);
                        //Console.WriteLine("BBs per hand: {0}", (mainScore / 10000) / Global.BB);

                        Console.WriteLine("Iterations per second: {0}", 1000 * sharedLoopCounter / (stopwatch.ElapsedMilliseconds + 1));
                        Console.WriteLine();
                    }
                    for (int traverser = 0; traverser < Global.nofPlayers; traverser++)     // traverser
                    {
                        if (t % StrategyInterval == 0 && index == 0)
                        {
                            trainer.UpdateStrategy(traverser);
                        }
                        if (t > PruneThreshold)
                        {
                            float q = RandomGen.NextFloat();
                            if (q < 0.05)
                            {
                                trainer.TraverseMCCFR(traverser, t);
                            }
                            else
                            {
                                trainer.TraverseMCCFRPruned(traverser);
                            }
                        }
                        else
                        {
                            trainer.TraverseMCCFR(traverser, t);
                        }
                    }
                    if (t % SaveToDiskInterval == 0 && index == 0)     // allow only one thread to do saving
                    {
                        Console.WriteLine("Saving nodeMap to disk disabled!");
                        //SaveToFile();
                    }

                    // discount all infosets (for all players)
                    if (t < LCFRThreshold && t % DiscountInterval == 0 && index == 0)     // allow only one thread to do discounting
                    {
                        float d = ((float)t / DiscountInterval) / ((float)t / DiscountInterval + 1);
                        trainer.DiscountInfosets(d);
                    }
                }
            });
        }