/// <summary>
        /// Trains a new player network based on available database data and returns the most accurate network, previous or new.
        /// </summary>
        /// <param name="playerId"></param>
        /// <param name="currentHandId"></param>
        /// <param name="currentNetwork"></param>
        /// <returns></returns>
        protected PAPNetworkContainer trainPlayerNetwork(long playerId, long currentHandId, PAPNetworkContainer previousNetwork, long startingHandId, int maxTrainingActions)
        {
            DateTime startTime = DateTime.Now;

            PAPNetworkContainer  returnNetworkContainer;
            PokerPlayerNNModelv1 playerPredictionNNModel = new PokerPlayerNNModelv1();

            playerPredictionNNModel.populatePlayActions(playerId, maxTrainingActions, startingHandId);
            playerPredictionNNModel.SuffleDataSource();

            if (playerPredictionNNModel.DataSourceCount < minActionsRequiredForNetwork)
            {
                return(previousNetwork);
            }

            playerPredictionNNModel.createNetwork();
            playerPredictionNNModel.createTrainingSets();
            playerPredictionNNModel.trainNetwork();
            playerPredictionNNModel.createTestingSets();

            BasicNetwork newPlayerNetwork   = playerPredictionNNModel.Network;
            decimal      newNetworkAccuracy = playerPredictionNNModel.getNetworkAccuracy();

            //We need to get the accuracy of the previous network on the new data so that it is a fair comparison
            playerPredictionNNModel.Network = previousNetwork.PlayerNetworkPool.BaseNetwork;
            decimal previousNetworkAccuracy = playerPredictionNNModel.getNetworkAccuracy();

            if (newNetworkAccuracy > previousNetworkAccuracy)
            {
                previousNetwork.UpdateNetwork(newPlayerNetwork, newNetworkAccuracy, playerPredictionNNModel.DataSourceCount, currentHandId);
            }
            else
            {
                //Regardless of whether we replace network/accuracy, we reset the trainingActions and mostRecentHandId
                previousNetwork.UpdateNetwork(previousNetwork.PlayerNetworkPool.BaseNetwork, previousNetworkAccuracy, playerPredictionNNModel.DataSourceCount, currentHandId);
            }

            returnNetworkContainer = previousNetwork;

            //SerializeObject.Save(PAP_STORE + playerId.ToString() + ".PAPdat", returnNetworkContainer);
            returnNetworkContainer.SavePAPContainer(PAP_STORE, playerId.ToString());
            return(returnNetworkContainer);
        }
Ejemplo n.º 2
0
        public void Go2()
        {
            Console.WriteLine("Let's get this show on the road!!");

            //Get all of the playerActions
            for (int i = 0; i < 20; i++)
            {
                PokerPlayerNNModelv1 playerPrediction = new PokerPlayerNNModelv1();
                playerPrediction.LoadNNDatasource("allPlayerPAPData.csv", PokerPlayerNNModelv1.Input_Neurons, PokerPlayerNNModelv1.Output_Neurons);

                playerPrediction.SuffleDataSource();
                playerPrediction.createNetwork();
                playerPrediction.createTrainingSets();
                playerPrediction.trainNetwork();
                playerPrediction.createTestingSets();
                decimal accuracy = playerPrediction.getNetworkAccuracy();

                Console.WriteLine("Achieved {0}% accuracy.", accuracy);
                NNLoadSave.saveNetwork(playerPrediction.Network, accuracy.ToString() + "_generalPlayer.eNN", "");
            }

            Console.WriteLine("... completed.");
            Console.ReadKey();
        }
Ejemplo n.º 3
0
        public void Go()
        {
            double[][] networkPredictedOutputs;

            byte   idealColumn;
            double outputMaxValue1st  = -1;
            byte   outputColumn       = byte.MaxValue;
            int    correctPredictions = 0;

            Console.WriteLine("Let's get this show on the road!!");

            long[] allPlayerIds = new long[0];

            //Todo - Add players to allPlayerIds

            //Before we do PAP we need select specific players based on agression
            //int numHandsCounted=0;
            //double RFreq_PreFlop=0, RFreq_PostFlop=0, CFreq_PreFlop=0, CFreq_PostFlop=0, PreFlopPlayFreq=0;
            //using (System.IO.StreamWriter sw = new System.IO.StreamWriter("playerAggression.csv", false))
            //{
            //    for (int i = 0; i < allPlayerIds.Length; i++)
            //    {
            //        //Break the stats down for the top player to find out what is the needed number of hands for a good answer
            //        //for (int j = 0; j < 353; j++)
            //        //{
            //            numHandsCounted = 0; RFreq_PreFlop = 0; RFreq_PostFlop = 0; CFreq_PreFlop = 0; CFreq_PostFlop = 0; PreFlopPlayFreq = 0;
            //            databaseQueries.PlayerAgressionMetrics(allPlayerIds[i],10000, 1, 1, ref numHandsCounted, ref RFreq_PreFlop, ref RFreq_PostFlop, ref CFreq_PreFlop, ref CFreq_PostFlop, ref PreFlopPlayFreq);
            //            //sw.WriteLine("{0},{1},{2},{3},{4},{5},{6}", allPlayerIds[i], numHandsCounted, RFreq_PreFlop, RFreq_PostFlop, CFreq_PreFlop, CFreq_PostFlop, PreFlopPlayFreq);
            //            sw.WriteLine("{0},{1},{2},{3},{4},{5}", allPlayerIds[i], RFreq_PreFlop, RFreq_PostFlop, CFreq_PreFlop, CFreq_PostFlop, PreFlopPlayFreq);
            //            //Console.WriteLine(j);
            //        //}
            //        sw.Flush();
            //        Console.WriteLine(i);
            //    }
            //}

            //return;
            PokerPlayerNNModelv1 playerPrediction = new PokerPlayerNNModelv1();

            //Get all of the playerActions
            if (true)
            {
                Console.WriteLine("Loading PAP data for {0} players.", allPlayerIds.Length);
                for (int i = 0; i < allPlayerIds.Length; i++)
                {
                    try
                    {
                        playerPrediction.populatePlayActions(allPlayerIds[i], 10000, 0);
                        Console.WriteLine("... data loaded for player index {0} ({1}). {2} actions added.", i, allPlayerIds[i], playerPrediction.NeuralNetDataSource.Count);
                        playerPrediction.SaveNNDataSource("allPlayerPAPData.csv");
                    }
                    catch (Exception ex)
                    {
                        Console.WriteLine("Meh - Error on playerId {0}.", allPlayerIds[i]);
                        using (System.IO.StreamWriter sw = new System.IO.StreamWriter("errors.txt", true))
                            sw.WriteLine(ex.ToString());
                    }
                }
            }
            else
            {
                Console.WriteLine("Loading NNData...");
                playerPrediction.LoadNNDatasource("allPlayerPAPData.csv", PokerPlayerNNModelv1.Input_Neurons, PokerPlayerNNModelv1.Output_Neurons);
                Console.WriteLine("... complete.");
            }

            Console.WriteLine("Shuffling NNData...");
            playerPrediction.SuffleDataSource();
            Console.WriteLine("... complete.");

            Console.WriteLine("Initiating training ...");

            //playerPrediction.createNetwork();
            playerPrediction.Network = NNLoadSave.loadNetwork("generalPlayer.eNN", "");
            //neuralPokerAI.getBotAiNN(false);
            playerPrediction.createTrainingSets();
            playerPrediction.trainNetwork();
            playerPrediction.createTestingSets();

            networkPredictedOutputs = new double[playerPrediction.NetworkInput.Length][];
            ;

            //Create the output array
            for (int i = 0; i < networkPredictedOutputs.Length; i++)
            {
                networkPredictedOutputs[i] = new double[PokerPlayerNNModelv1.Output_Neurons];
            }

            Stopwatch timer = new Stopwatch();

            timer.Start();
            playerPrediction.testNetwork(networkPredictedOutputs);
            timer.Stop();

            for (int i = 0; i < networkPredictedOutputs.GetLength(0); i++)
            {
                outputMaxValue1st = -1;

                //Determine if the output match the ideal
                if (playerPrediction.NetworkIdealOutput[i][0] == 1)
                {
                    idealColumn = 0;
                }
                else if (playerPrediction.NetworkIdealOutput[i][1] == 1)
                {
                    idealColumn = 1;
                }
                else if (playerPrediction.NetworkIdealOutput[i][2] == 1)
                {
                    idealColumn = 2;
                }
                else
                {
                    throw new Exception("This should never happen");
                }

                if (networkPredictedOutputs[i][0] > outputMaxValue1st)
                {
                    outputMaxValue1st = networkPredictedOutputs[i][0];
                    outputColumn      = 0;
                }

                if (networkPredictedOutputs[i][1] > outputMaxValue1st)
                {
                    outputMaxValue1st = networkPredictedOutputs[i][1];
                    outputColumn      = 1;
                }

                if (networkPredictedOutputs[i][2] > outputMaxValue1st)
                {
                    outputMaxValue1st = networkPredictedOutputs[i][2];
                    outputColumn      = 2;
                }

                if (outputColumn == byte.MaxValue)
                {
                    throw new Exception("This should not happen!");
                }

                if (outputColumn != idealColumn)
                {
                    Console.WriteLine("****  Actual-{0},Predicted-{1} - [{2}, {3}, {4}]", idealColumn, outputColumn, String.Format("{0:0.00}", networkPredictedOutputs[i][0]), String.Format("{0:0.00}", networkPredictedOutputs[i][1]), String.Format("{0:0.00}", networkPredictedOutputs[i][2]));
                }
                else
                {
                    //if (idealColumn == 4)
                    //Console.WriteLine("Actual-{0}, Predicted-{1} - [{2}, {3}, {4}, {5}, {6}]", idealColumn, outputColumn, String.Format("{0:0.00}", networkPredictedOutputs[i][0]), String.Format("{0:0.00}", networkPredictedOutputs[i][1]), String.Format("{0:0.00}", networkPredictedOutputs[i][2]), String.Format("{0:0.00}", networkPredictedOutputs[i][3]), String.Format("{0:0.00}", networkPredictedOutputs[i][4]));
                    //Console.WriteLine("Actual-{0},Predicted-{1} - [{2}, {3}, {4}]", idealColumn, outputColumn, String.Format("{0:0.00}", networkPredictedOutputs[i][0]), String.Format("{0:0.00}", networkPredictedOutputs[i][1]), String.Format("{0:0.00}", networkPredictedOutputs[i][2]));
                    correctPredictions++;
                }
            }

            Console.WriteLine("Predicted {0}% Of Actions Correctly.", ((double)correctPredictions / (double)(int)(playerPrediction.DataSourceCount - (int)(playerPrediction.DataSourceCount * playerPrediction.Train_Data_Percent))) * 100);
            Console.WriteLine("Per network compute - {0}ms.", (double)timer.ElapsedMilliseconds / ((double)(playerPrediction.DataSourceCount - (int)(playerPrediction.DataSourceCount * playerPrediction.Train_Data_Percent))));
            //Console.WriteLine("Predicted {0}% Of Actions Correctly.", ((double)correctPredictions / (double)(int)(playerPrediction.DataSourceCount)) * 100);

            NNLoadSave.saveNetwork(playerPrediction.Network, "generalPlayerNew.eNN", "");

            Console.ReadKey();
        }