Ejemplo n.º 1
0
        public sparseMatrixRow Clone()
        {
            sparseMatrixRow r = new sparseMatrixRow(lable);

            List <int>    dimsN   = new List <int>();
            List <double> valuesN = new List <double>();

            for (int i = 0; i < dims.Count; i++)
            {
                dimsN.Add(dims[i]);
                valuesN.Add(values[i]);
            }

            r.dims     = dimsN;
            r.values   = valuesN;
            r.FileName = this.FileName;

            return(r);
        }
Ejemplo n.º 2
0
        public bool getMatrixFromString(string theMatrixInAString)
        {
            matrix.Clear();

            string[] matrixInRows = Regex.Split(theMatrixInAString, "[\n|\r]");

            ClassDescriptionDictionary = new Dictionary <int, string>();

            string lastFileName = "";

            //Declare the PathCandidates we will use
            Regex spaceSplitter     = new Regex(@"[\s]+");
            Regex doubleDotSplitter = new Regex(@":");

            //Parse and load to Ram
            foreach (string read in matrixInRows)
            {
                //Keep us safe from comments
                if (read.StartsWith("#ClassDescription"))
                {
                    string[] cols = Regex.Split(read, "\t");
                    ClassDescriptionDictionary.Add(int.Parse(cols[1]), cols[2]);
                    continue;
                }
                else if (read.StartsWith("#"))
                {
                    lastFileName = read.Substring(1, read.Length - 1);
                    continue;
                }


                if (read.Length == 0)
                {
                    continue;
                }

                List <int>    dims   = new List <int>();
                List <double> values = new List <double>();

                string[] line  = spaceSplitter.Split(read);
                int      lable = int.Parse(line[0]);


                for (int i = 1; i < line.Length; i++)
                {
                    string[] info = doubleDotSplitter.Split(line[i]);

                    try
                    {
                        dims.Add(int.Parse(info[0]));
                        values.Add(double.Parse(info[1]));
                    }
                    catch (Exception e)
                    {
                        throw new Exception(e.Message + "\n" + info[0].ToString() + " " + info[1].ToString() + "\n" + "Line " + i.ToString() + "\n" + line[i].ToString());
                    }
                }

                sparseMatrixRow row = new sparseMatrixRow(lable, dims, values);
                row.FileName = lastFileName;
                matrix.Add(row);
            }

            return(true);
        }
Ejemplo n.º 3
0
        //------

        public void addRow(sparseMatrixRow theRow)
        {
            this.matrix.Add(theRow);
        }
Ejemplo n.º 4
0
        /// <summary>
        /// This method compresses the matrix only to two vectors, one from the positive class
        /// and another from the negative.  This is achieved by averaging the values for each dimension
        /// </summary>
        ///
        public void shatterMatrix()
        {
            SortedDictionary <int, double> pos = new SortedDictionary <int, double>();
            SortedDictionary <int, double> neg = new SortedDictionary <int, double>();

            int noPosVectors = 0;
            int noNegVectors = 0;


            //Sum EveryBody
            foreach (sparseMatrixRow r in matrix)
            {
                if (r.Lable > 0)
                {
                    //Positive Class
                    noPosVectors++;
                    for (int i = 0; i < r.Dims.Count; i++)
                    {
                        if (pos.ContainsKey(r.Dims[i]))
                        {
                            pos[r.Dims[i]] += r.Values[i];
                        }
                        else
                        {
                            pos.Add(r.Dims[i], r.Values[i]);
                        }
                    }
                }
                else
                {
                    //Negative Class
                    noNegVectors++;
                    for (int i = 0; i < r.Dims.Count; i++)
                    {
                        if (neg.ContainsKey(r.Dims[i]))
                        {
                            neg[r.Dims[i]] += r.Values[i];
                        }
                        else
                        {
                            neg.Add(r.Dims[i], r.Values[i]);
                        }
                    }
                }
            }

            List <int>    posDims   = new List <int>();
            List <double> posValues = new List <double>();
            List <int>    negDims   = new List <int>();
            List <double> negValues = new List <double>();


            foreach (KeyValuePair <int, double> kvp in pos)
            {
                posDims.Add(kvp.Key);
                posValues.Add(kvp.Value / noPosVectors);
            }

            foreach (KeyValuePair <int, double> kvp in neg)
            {
                negDims.Add(kvp.Key);
                negValues.Add(kvp.Value / noNegVectors);
            }

            this.matrix.Clear();

            sparseMatrixRow posRow = new sparseMatrixRow(1, posDims, posValues);
            sparseMatrixRow negRow = new sparseMatrixRow(-1, negDims, negValues);

            this.matrix.Add(posRow);
            this.matrix.Add(negRow);
        }
Ejemplo n.º 5
0
        //----------------------------------------------

        //Private Methods
        /// <summary>
        /// If the index is not found, -1 will be returned
        /// </summary>
        /// <param name="row"></param>
        /// <param name="value"></param>
        /// <returns></returns>
        private static int getDimIndexFromValue(sparseMatrixRow row, int value)
        {
            return(row.Dims.IndexOf(value));
        }
Ejemplo n.º 6
0
 public SpectralNode(PatternTools.sparseMatrixRow v1)
 {
     myClusterRepresentation = PatternTools.pTools.MergeTwoInputVectors(v1, 1, v1, 1, false);;
     MyInputVectors.Add(v1);
 }
Ejemplo n.º 7
0
        //Constructors -----------------------------------

        public SpectralNode(PatternTools.sparseMatrixRow v1, PatternTools.sparseMatrixRow v2)
        {
            myInputVectors.Add(v1);
            myInputVectors.Add(v2);
            myClusterRepresentation = PatternTools.pTools.MergeTwoInputVectors(v1, 1, v2, 1, true);
        }