Ejemplo n.º 1
0
        //INPUT : get list of H(fi)
        //PROCESS : select 1 candidate, return col name
        public static string select1Candidate_entropy(int method, DataTable dt,
                                                      List <string> list_F, List <string> list_S
                                                      , List <str_double> list_entropy, List <str2_double> list_MI)
        {
            List <string> list_predict = new List <string>();

            list_predict.AddRange(list_S);
            try
            {
                temp_listEntropy.Clear();
                temp_colWithHigestEntropy = "";
                double highestQuality = -9999;
                foreach (string f in list_F)
                {
                    //----- test 1 candidate ---------
                    list_predict.Add(f);
                    str_double new_data = new str_double();
                    new_data.str = f;
                    if (method == methodSelection_Greedy)
                    {
                        new_data.v = calJointEntropy(dt, list_predict);
                    }                                                                                        //target
                    else if (method == methodSelection_MIFS)
                    {
                        new_data.v = candidate_calMIFS(dt, f, list_S, list_entropy, list_MI);
                    }
                    else if (method == methodSelection_JMIM)
                    {
                        new_data.v = candidate_calMAXIMIN(miximinMethod_JMIM, dt, f, list_S, list_entropy, list_MI);
                    }
                    else if (method == methodSelection_CMIM)
                    {
                        new_data.v = candidate_calMAXIMIN(miximinMethod_CMIM, dt, f, list_S, list_entropy, list_MI);
                    }
                    temp_listEntropy.Add(new_data);
                    if (new_data.v > highestQuality)
                    {
                        temp_colWithHigestEntropy = new_data.str;
                        highestQuality            = new_data.v;
                    }
                    list_predict.RemoveAt(list_predict.Count - 1);
                }
            }
            catch (Exception ex) { TheSys.showError(ex); temp_colWithHigestEntropy = ""; }
            return(temp_colWithHigestEntropy);
        }
Ejemplo n.º 2
0
        public static str_double calEntropyOfColumn(DataTable dt, DataColumn dc)
        {
            str_double entropy = new str_double();

            try
            {
                //--- build unique list ------------------------------------------------
                List <str_int> list_unique = new List <str_int>();
                foreach (DataRow dr in dt.Rows)
                {
                    Boolean neverExist = true;
                    string  current_v  = dr[dc].ToString();
                    foreach (str_int uni in list_unique)
                    {
                        if (uni.str == current_v)
                        {
                            uni.i++; neverExist = false; break;
                        }
                    }
                    if (neverExist)
                    {
                        list_unique.Add(new str_int()
                        {
                            str = current_v, i = 1
                        });
                    }
                }
                //--- Compute Entropy ------------------------------------------------
                double prob_log_cummulative = 0;
                int    total_row            = dt.Rows.Count;
                foreach (str_int uni in list_unique)
                {
                    prob_log_cummulative += calPossibleLog(uni.i, total_row);
                }
                entropy.str = dc.ColumnName;
                entropy.v   = -prob_log_cummulative;
            }
            catch (Exception ex) { TheSys.showError(ex); }
            return(entropy);
        }
Ejemplo n.º 3
0
        //Threshold End - Start
        //public static Feature getFeature(string selected_feature, DataTable dt)
        //{
        //    Feature f = new Feature();
        //    f.name = selected_feature;
        //    try
        //    {
        //        double start = TheTool.getDouble(dt.Rows[0][selected_feature].ToString());
        //        double end = TheTool.getDouble(dt.Rows[dt.Rows.Count - 1][selected_feature].ToString());
        //        if (end > start) { f.opt = ">="; }
        //        else { f.opt = "<="; }
        //        //-----
        //        start = Math.Round(start, 2);
        //        end = Math.Round(end, 2);
        //        double v = (start + end) / 2;
        //        f.v = Math.Round(v, 2);
        //    }
        //    catch (Exception ex) { TheSys.showError(ex); }
        //    return f;
        //}

        ////indices is row number
        //public static Feature getFeature(string selected_feature, DataTable dt_concat
        //    , List<int> start_indices, List<int> end_indices)
        //{
        //    Feature f = new Feature();
        //    f.name = selected_feature;
        //    try
        //    {
        //        double start = TheTool.dataTable_getAverage(dt_concat, start_indices, selected_feature);
        //        double end = TheTool.dataTable_getAverage(dt_concat, end_indices, selected_feature);
        //        if (end > start) { f.opt = ">="; }
        //        else { f.opt = "<="; }
        //        //-----
        //        start = Math.Round(start, 2);
        //        end = Math.Round(end, 2);
        //        double v = (start + end) / 2;
        //        f.v = Math.Round(v, 2);
        //    }
        //    catch (Exception ex) { TheSys.showError(ex); }
        //    return f;
        //}


        ////Feature Name with Threshold by DataTable (First - End)
        //public static Feature getFeature(string s)
        //{
        //    Feature f = new Feature();
        //    f.name = s;
        //    return f;
        //}

        //public static List<string> Feature_getListName(List<Feature> list_f)
        //{
        //    List<string> list = new List<string>();
        //    foreach (Feature f in list_f) { list.Add(f.name); }
        //    return list;
        //}

        //public static List<string> Feature_getListFullString(List<Feature> list_f)
        //{
        //    List<string> list = new List<string>();
        //    foreach (Feature f in list_f) { list.Add(f.name + " " + f.opt + " " + f.v); }
        //    return list;
        //}

        //H(X)
        //table contain only useful Column, value are discretized
        //analyze all row
        public static List <str_double> calEntropy(DataTable dt)
        {
            List <str_double> list_entropy = new List <str_double>();
            List <string>     final_output = new List <string>();//Data

            try
            {
                double highestEntropy = 0;
                foreach (DataColumn dc in dt.Columns)
                {
                    str_double new_data = calEntropyOfColumn(dt, dc);
                    list_entropy.Add(new_data);
                    if (new_data.v > highestEntropy)
                    {
                        temp_colWithHigestEntropy = new_data.str;
                        highestEntropy            = new_data.v;
                    }
                }
            }
            catch (Exception ex) { TheSys.showError(ex); temp_colWithHigestEntropy = ""; }
            return(list_entropy);
        }