Ejemplo n.º 1
0
 /**
  * Brute-force matcher create method.
  *     param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
  *     preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
  *     BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
  *     description).
  *     nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
  *     k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
  *     matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
  *     pairs. Such technique usually produces best results with minimal number of outliers when there are
  *     enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
  * return automatically generated
  */
 public static new BFMatcher create(int normType)
 {
     return(BFMatcher.__fromPtr__(features2d_BFMatcher_create_11(normType)));
 }
Ejemplo n.º 2
0
 /**
  * Brute-force matcher create method.
  *     preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
  *     BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
  *     description).
  *     nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
  *     k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
  *     matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
  *     pairs. Such technique usually produces best results with minimal number of outliers when there are
  *     enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
  * return automatically generated
  */
 public static BFMatcher create()
 {
     return(BFMatcher.__fromPtr__(features2d_BFMatcher_create_12()));
 }
Ejemplo n.º 3
0
        //
        // C++: static Ptr_BFMatcher cv::BFMatcher::create(int normType = NORM_L2, bool crossCheck = false)
        //

        /**
         * Brute-force matcher create method.
         *     param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
         *     preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
         *     BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
         *     description).
         *     param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
         *     nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
         *     k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
         *     matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
         *     pairs. Such technique usually produces best results with minimal number of outliers when there are
         *     enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
         * return automatically generated
         */
        public static BFMatcher create(int normType, bool crossCheck)
        {
            return(BFMatcher.__fromPtr__(features2d_BFMatcher_create_10(normType, crossCheck)));
        }