Ejemplo n.º 1
0
        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public UserEvd(Matrix <Complex32> matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = DenseMatrix.Identity(order);
            MatrixD  = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);

            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            if (IsSymmetric)
            {
                var matrixCopy = matrix.ToArray();
                var tau        = new Complex32[order];
                var d          = new float[order];
                var e          = new float[order];

                SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
                SymmetricDiagonalize(d, e, order);
                SymmetricUntridiagonalize(matrixCopy, tau, order);

                for (var i = 0; i < order; i++)
                {
                    VectorEv[i] = new Complex(d[i], e[i]);
                }
            }
            else
            {
                var matrixH = matrix.ToArray();
                NonsymmetricReduceToHessenberg(matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(matrixH, order);
            }

            for (var i = 0; i < VectorEv.Count; i++)
            {
                MatrixD.At(i, i, (Complex32)VectorEv[i]);
            }
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public UserEvd(Matrix<Complex32> matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = DenseMatrix.Identity(order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);
           
            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            if (IsSymmetric)
            {
                var matrixCopy = matrix.ToArray();
                var tau = new Complex32[order];
                var d = new float[order];
                var e = new float[order];

                SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
                SymmetricDiagonalize(d, e, order);
                SymmetricUntridiagonalize(matrixCopy, tau, order);

                for (var i = 0; i < order; i++)
                {
                    VectorEv[i] = new Complex(d[i], e[i]);
                }
            }
            else
            {
                var matrixH = matrix.ToArray();
                NonsymmetricReduceToHessenberg(matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(matrixH, order);
            }

            for (var i = 0; i < VectorEv.Count; i++)
            {
                MatrixD.At(i, i, (Complex32)VectorEv[i]);
            }
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public UserEvd(Matrix<float> matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = matrix.CreateMatrix(order, order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);
           
            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i);
                }
            }

            var d = new float[order];
            var e = new float[order];

            if (IsSymmetric)
            {
                matrix.CopyTo(MatrixEv);
                d = MatrixEv.Row(order - 1).ToArray();

                SymmetricTridiagonalize(d, e, order);
                SymmetricDiagonalize(d, e, order);
            }
            else
            {
                var matrixH = matrix.ToArray();

                NonsymmetricReduceToHessenberg(matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(matrixH, d, e, order);
            }

            for (var i = 0; i < order; i++)
            {
                MatrixD.At(i, i, d[i]);

                if (e[i] > 0)
                {
                    MatrixD.At(i, i + 1, e[i]);
                }
                else if (e[i] < 0)
                {
                    MatrixD.At(i, i - 1, e[i]);
                }
            }

            for (var i = 0; i < order; i++)
            {
                VectorEv[i] = new Complex(d[i], e[i]);
            }
        }
Ejemplo n.º 4
0
        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public UserEvd(Matrix <float> matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = matrix.CreateMatrix(order, order);
            MatrixD  = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);

            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i);
                }
            }

            var d = new float[order];
            var e = new float[order];

            if (IsSymmetric)
            {
                matrix.CopyTo(MatrixEv);
                d = MatrixEv.Row(order - 1).ToArray();

                SymmetricTridiagonalize(d, e, order);
                SymmetricDiagonalize(d, e, order);
            }
            else
            {
                var matrixH = matrix.ToArray();

                NonsymmetricReduceToHessenberg(matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(matrixH, d, e, order);
            }

            for (var i = 0; i < order; i++)
            {
                MatrixD.At(i, i, d[i]);

                if (e[i] > 0)
                {
                    MatrixD.At(i, i + 1, e[i]);
                }
                else if (e[i] < 0)
                {
                    MatrixD.At(i, i - 1, e[i]);
                }
            }

            for (var i = 0; i < order; i++)
            {
                VectorEv[i] = new Complex(d[i], e[i]);
            }
        }