Ejemplo n.º 1
0
        static void Main(string[] args)
        {
            var net = BinaryFileSerializer.LoadNetState("../../../Misc/LearnedNet marketPatterns-params5-3outputs-learning 5-11-3.net");
            //var patterns = new TestPatternPreparer("../../../Misc/marketPatterns-test.txt", new RealNumberParser()).PreparePatterns();
            var patterns = new MarketSeriesPatternPreparer("../../../Misc/marketPatterns-test.txt", new RealNumberParser()).PreparePatterns();
            var output = patterns.Select(pattern => net.Propagate(pattern.Input)).ToList();

            for (int i = 0; i < patterns.Count; i++)
            {
                Console.WriteLine("Test: {0}, Real: {1}", string.Join(";", patterns.ElementAt(i).Output), string.Join(";", output.ElementAt(i)));
            }

            Console.WriteLine("Finished. Press any key...");
            Console.ReadKey();
        }
Ejemplo n.º 2
0
        static void Main(string[] args)
        {
            /*var f =
                new Func<IVector, double>(
                    vector =>
                    -Math.Exp(-Math.Pow(vector[0].GetMod().X - 1, 2)) -
                    Math.Exp(-0.5 * Math.Pow(vector[1].GetMod().X - 2, 2)));

            Func<IVector, IVector> g = vector => new Vector(new[]
                {
                    // df/dx = {-2 e^(-    (x-1)^2) (x-1)}
                    new RealNumber(2*Math.Exp(-Math.Pow(vector[0].GetMod().X - 1, 2))*(vector[0].GetMod().X - 1)),

                    // df/dy = {-  e^(-1/2 (y-2)^2) (y-2)}
                    new RealNumber(Math.Exp(-0.5*Math.Pow(vector[1].GetMod().X - 2, 2))*(vector[1].GetMod().X - 2))
                });*/

            /*var f = new Func<IVector, double>(
                    vector =>
                    //(1 - x)^2 + 100(-x^2 + y)^2
                    Math.Pow(1 - vector[0].GetMod().X, 2) + 100 * Math.Pow(-Math.Pow(vector[0].GetMod().X, 2) + vector[1].GetMod().X, 2) );
            Func<IVector, IVector> g = vector => new Vector(new[]
                {
                    // df/dx = {-2x + 200(-x^2 + y)(-2)x }
                    new RealNumber( -2.0*vector[0].GetMod().X - 400*(-Math.Pow(vector[0].GetMod().X, 2) + vector[1].GetMod().X)*vector[0].GetMod().X ),

                    // df/dy = {200(-x^2 + y)}
                    new RealNumber(200*( -Math.Pow(vector[0].GetMod().X, 2) + vector[1].GetMod().X ))
                });*/

            /*var f = new Func<IVector, double>(
                    vector =>
                        //(1 - x)^2 + (1 - y)^2
                    Math.Pow(1.0 - vector[0].GetMod().X, 2) + Math.Pow(1.0 - vector[1].GetMod().X, 2));
            Func<IVector, IVector> g = vector => new Vector(new[]
                {
                    // df/dx = {-2(1 - x)}
                    new RealNumber( -2.0*(1.0 - vector[0].GetMod().X) ),

                    // df/dy = {-2(1 - y)}
                    new RealNumber( -2.0*(1.0 - vector[1].GetMod().X) )
                });*/

            //var b = new BfgsMethod();
            //b.Minimize(f, g, 2);

            //var x = b.Values;
            //var fx = b.Minimum;
            //return;

            const int inputsCount = 5;
            const int hiddenNeuronsCount = 11;
            const int outputNeuronsCount = 3;
            //var net = new SimpleFuzzyNet(inputsCount, new[] {hiddenNeuronsCount}, () => DiscreteFuzzyNumber.GenerateLittleNumber(levelsCount: 11), levelsCount: 11);
            var net = new SimpleFuzzyNet(inputsCount, new[] { hiddenNeuronsCount, hiddenNeuronsCount}, RealNumber.GenerateLittleNumber, outputNeuronsCount: outputNeuronsCount);
            /*
            //weights for 2-2-1 net for XOR function
            var weights = new Vector(new IFuzzyNumber[]
                {
                    //output layer
                    //one neuron
                    new RealNumber(0.032680),
                    new RealNumber(0.020701),

                    //hidden 0
                    new RealNumber(-0.082843),
                    new RealNumber(0.018629),
                    new RealNumber(-0.011006),
                    new RealNumber(-0.071407),
                });
            net.SetWeights(weights);
            */
            const string filename = "marketPatterns-params5-3outputs-learning.txt";
            var numberParser = new RealNumberParser();
            //const string filename = "testPatterns.txt";
            //var numberParser = new FuzzyNumberParser();

            //var patterns = new TestPatternPreparer(Path.Combine("../../../Misc", filename), numberParser).PreparePatterns();
            var patterns = new MarketSeriesPatternPreparer(Path.Combine("../../../Misc", filename), numberParser).PreparePatterns();
            //var patterns = CreatePatterns((x, y) => Math.Abs(Math.Sin(x) + Math.Sin(y))/2.0);

            var bp = new BackPropagation(patterns, 0.05, 0.01);
            bp.CyclePerformed +=
                (state) =>
                {
                    //Console.ReadKey();
                    if (state.Cycle%50 == 0)
                    {
                        Console.WriteLine("cycle: " + state.Cycle +
                                          " error: " + state.CycleError.ToString("0.#####################"));
                    }
                };

            /*var bp = new BackPropagationWithPseudoNeuton(patterns);
            bp.CyclePerformed +=
                (state) =>
                    {
                        //Console.ReadKey();
                        //if (state.Cycle % 10 == 0)
                            Console.WriteLine("cycle: " + state.Cycle +
                                              " error: " + state.CycleError.ToString("0.#########################"));
                    };*/

            bp.LearnNet(net);

            var key = new ConsoleKeyInfo();
            do
            {
                while(Console.KeyAvailable == false)
                    Thread.Sleep(200);
                key = Console.ReadKey();
            } while (key.Key != ConsoleKey.Escape);

            bp.StopLearning();

            Console.WriteLine("Simple method finished");

            var bp2 = new BackPropagationWithPseudoNeuton(patterns);
            bp2.CyclePerformed +=
                (state) =>
                {
                    //Console.ReadKey();
                    //if (state.Cycle % 10 == 0)
                    Console.WriteLine("cycle: " + state.Cycle +
                                      " error: " + state.CycleError.ToString("0.#########################"));
                };

            //bp2.LearnNet(net);

            var key1 = new ConsoleKeyInfo();
            do
            {
                while (Console.KeyAvailable == false)
                    Thread.Sleep(200);
                key1 = Console.ReadKey();
            } while (key1.Key != ConsoleKey.Escape);

            bp2.StopLearning();

            Console.WriteLine("Learning finished. Press any key...");
            Console.ReadKey();

            BinaryFileSerializer.SaveNetState(
                "../../../Misc/LearnedNet " + Path.GetFileNameWithoutExtension(filename) +
                " " + inputsCount + "-" + hiddenNeuronsCount + "-" + outputNeuronsCount + ".net", net);

            var output = patterns.Select(pattern => net.Propagate(pattern.Input)).ToList();

            for (int i = 0; i < patterns.Count; i++)
            {
                Console.WriteLine("Test: {0}, Real: {1}", string.Join(";", patterns.ElementAt(i).Output), string.Join(";", output.ElementAt(i)));
            }

            Console.WriteLine("Finished. Press any key...");
            Console.ReadKey();
        }