Ejemplo n.º 1
0
        public void TrainWithTeach(Matrix x, int y, double norm = 1e-3, double moment = 0.0, double lambda = 0.0, Optimizer optimizer = Optimizer.SGD)
        {
            Tensor4 X = new Tensor4(x.width, x.height, 1, 1);

            X.elements = x.elements;
            Tensor4 Y = new Tensor4(output.width, output.height, output.deep, 1);

            if (y != -1)
            {
                Y[0, 0, 0, y] = 1.0;
            }
            BackwardBase(X, Y, norm, moment, lambda, optimizer);
        }
Ejemplo n.º 2
0
        public void TrainWithTeach(Vector x, int y, double val, double norm = 1e-3, double moment = 0.0, double lambda = 0.0, Optimizer optimizer = Optimizer.SGD)
        {
            Tensor4 X = new Tensor4(x.Length, 1, 1, 1);

            X.elements = x.elements;
            Tensor4 Y = new Tensor4(output.width, output.height, output.deep, 1);

            if (y != -1)
            {
                Y[0, 0, 0, y] = 1.0;
            }

            for (int i = 0; i < layers.Count; i++)
            {
                if (layers[i] is Hand)
                {
                    layers[i].output.elements[layers[i].output.elements.Length - 1] = val;
                    break;
                }
            }
            BackwardBase(X, Y, norm, moment, lambda, optimizer);
        }
Ejemplo n.º 3
0
 public void TrainWithTeach(Tensor4 x, Tensor4 y, double norm = 1e-3, double moment = 0.0, double lambda = 0.0, Optimizer optimizer = Optimizer.SGD)
 {
     BackwardBase(x, y, norm, moment, lambda, optimizer);
 }
Ejemplo n.º 4
0
        public void TrainWithTeach(Tensor4 x, int[] y, double norm = 1e-3, double moment = 0.0, double lambda = 0.0, Optimizer optimizer = Optimizer.SGD)
        {
            Tensor4 Y = new Tensor4(output.width, output.height, output.deep, output.bs);

            if (output.width != 1 && output.height * output.deep == 1)
            {
                for (int i = 0; i < y.Length; i++)
                {
                    if (y[i] != -1)
                    {
                        Y[i, 0, 0, y[i]] = 1.0;
                    }
                }
            }
            else if (output.deep != 1 && output.height * output.width == 1)
            {
                for (int i = 0; i < y.Length; i++)
                {
                    if (y[i] != -1)
                    {
                        Y[i, y[i], 0, 0] = 1.0;
                    }
                    else
                    {
                        throw new Exception();
                    }
                }
            }
            BackwardBase(x, Y, norm, moment, lambda, optimizer);
        }
Ejemplo n.º 5
0
        void BackwardBase(Tensor4 x, Tensor4 y, double norm, double moment, double lambda, Optimizer optimizer)
        {
            Tensor4[] grads, weights;
            Vector    E;
            Matrix    A;
            Vector    b;

            switch (optimizer)
            {
                #region SGD
            case Optimizer.SGD:
                CalcDelts(x, y);
                CalcGrads(lambda);
                Train(norm, moment);
                break;

                #endregion
                #region ConjGrads
            case Optimizer.ConjGrads:
                CalcDelts(x, y);
                grads   = CalcGrads(lambda);
                weights = GetWeights();
                if (lastGrads == null)
                {
                    lastGrads = new Tensor4[layers.Count];
                    lastB     = new Tensor4[layers.Count];
                    for (int i = 0; i < lastGrads.Length; i++)
                    {
                        if (grads[i] != null)
                        {
                            lastGrads[i] = new Tensor4(grads[i].width, grads[i].height, grads[i].deep, grads[i].bs);
                            lastB[i]     = new Tensor4(grads[i].width, grads[i].height, grads[i].deep, grads[i].bs);
                        }
                    }
                }
                for (int i = 0; i < layers.Count; i++)
                {
                    if (grads[i] != null)
                    {
                        double lG_l2 = lastGrads[i].EuclidNorm();
                        double w     = (lG_l2 != 0.0) ? grads[i].EuclidNorm() / lG_l2 : 0.0;
                        lastB[i] = grads[i] + w * lastB[i];

                        weights[i] -= norm * lastB[i];
                    }
                }
                lastGrads = grads;
                SetWeights(weights);
                break;

                #endregion
                #region Adam
            case Optimizer.Adam:
                CalcDelts(x, y);
                grads   = CalcGrads(lambda);
                weights = GetWeights();
                if (m == null || v == null)
                {
                    m = new Tensor4[grads.Length];
                    v = new Tensor4[grads.Length];
                    for (int i = 0; i < grads.Length; i++)
                    {
                        if (grads[i] != null)
                        {
                            m[i] = new Tensor4(grads[i].width, grads[i].height, grads[i].deep, grads[i].bs);
                            v[i] = new Tensor4(grads[i].width, grads[i].height, grads[i].deep, grads[i].bs);
                        }
                    }
                }

                Parallel.For(0, grads.Length, i =>
                {        //for (int i = 1; i < grads.Length; i++)
                    if (grads[i] != null)
                    {
                        m[i]        = b1 * m[i] + (1.0 - b1) * grads[i];
                        v[i]        = b2 * v[i] + (1.0 - b2) * (grads[i] * grads[i]);
                        var M       = m[i] / (1.0 - b1);
                        var V       = v[i] / (1.0 - b2);
                        weights[i] -= norm * M / (V.ElementsPow(0.5) + e);
                    }
                });
                SetWeights(weights);
                break;

                #endregion
                #region Marat
            case Optimizer.Marat:

                CalcDelts(x, y);
                grads   = CalcGrads(lambda);
                weights = GetWeights();

                int d = x.bs;


                E = CalcErrRootMSEBase2(x, y);
                //*
                for (int i = 0; i < weights.Length; i++)
                {
                    if (grads[i] != null)
                    {
                        if (d < weights[i].dhw)
                        {
                            throw new Exception("Недостаточно обучающей выборки.");
                        }
                        A = new Matrix(weights[i].dhw, weights[i].dhw);
                        b = new Vector(weights[i].dhw);

                        var w = layers[i].WeightsNeurons();
                        for (int n = 0; n < w.Length; n++)
                        {
                        }
                    }
                }
                //*
                //*/

                /*
                 * k = 0;
                 * for (int i = 0; i < weights.Length; i++)
                 * {
                 *  if (grads[i] != null)
                 *  {
                 *      for (int j = 0; j < weights[i].dhw; j++)
                 *      {
                 *          weights[i].elements[j] = a[k++];
                 *      }
                 *  }
                 * }
                 * //*/
                SetWeights(weights);
                break;

                #endregion
                #region Taylor
            case Optimizer.Taylor:
                CalcDelts(x, y);

                grads   = CalcGrads(lambda);
                weights = GetWeights();
                E       = CalcErrRootMSEBase2(x, y);
                if (E.Length != 1)
                {
                    throw new Exception("Ты пидор");
                }

                for (int i = 1; i < grads.Length; i++)
                {        //for (int i = 1; i < grads.Length; i++)
                    if (grads[i] != null)
                    {
                        for (int j = 0; j < grads[i].elements.Length; j++)
                        {
                            var grad = E[0] / grads[i].elements[j];
                            if (!Double.IsNaN(grad) && !Double.IsInfinity(grad))
                            {
                                weights[i] -= norm * grad;
                            }
                            else
                            {
                            }
                        }
                    }
                }
                ;
                SetWeights(weights);
                //Train(norm, moment);
                break;

                #endregion
                #region NonIteratorLinear
            case Optimizer.NonIteratorLinear:
                int wN    = layers[layers.Count - 1].weights.height;
                var input = x;    //[k, 0, 0, j]
                for (int i = 0; i < layers[layers.Count - 1].weights.width; i++)
                {
                    A = new Matrix(wN, wN);
                    b = new Vector(wN);

                    for (int j = 0; j < b.Length; j++)
                    {
                        for (int k = 0; k < input.bs; k++)
                        {
                            b[j] += y[k, 0, 0, i] * input[k, 0, 0, j];
                        }
                    }
                    for (int q = 0; q < wN; q++)
                    {
                        for (int n = 0; n < wN; n++)
                        {
                            for (int k = 0; k < input.bs; k++)
                            {
                                A[q, n] += input[k, 0, 0, n] * input[k, 0, 0, q];
                            }
                        }
                    }
                    //A.Transpose();
                    var result = matlib.SolvingSystems.SolvingSLAY(A, b);
                    for (int j = 0; j < wN; j++)
                    {
                        layers[layers.Count - 1].weights[0, 0, j, i] = result[j];
                    }
                }
                break;
                #endregion
            }
            //if(lambda != 0.0)
            //Regularization(lambda);
        }