Ejemplo n.º 1
0
        public void TestXOR()
        {
            double[][] _inputPattern =
            {
                new double[2] {
                    0.0, 0.0
                },
                new double[2] {
                    1.0, 0.0
                },
                new double[2] {
                    0.0, 1.0
                },
                new double[2] {
                    1.0, 1.0
                }
            };
            double[][] _targetOutputPattern =
            {
                new double[1] {
                    0.0
                },
                new double[1] {
                    1.0
                },
                new double[1] {
                    1.0
                },
                new double[1] {
                    0.0
                }
            };

            MLPNetworkWithBias network = new MLPNetworkWithBias(2, 5, 1, 2.8);

            network.InitLog("XOR-");

            Random rnd = new Random();

            for (int i = 0; i < 50000; i++)
            {
                //network.BatchTrain(_inputPattern, _targetOutputPattern);
                int index = rnd.Next(0, 4);
                //Console.WriteLine(index);
                network.OnlineTrain(_inputPattern[index], _targetOutputPattern[index]);
            }

            for (int i = 0; i < _inputPattern.Length; i++)
            {
                double[] outst = network.Run(_inputPattern[i]);
                Console.WriteLine("XOR({0}, {1}) = {2:0.000}", _inputPattern[i][0], _inputPattern[i][1], outst[0]);
            }
        }
Ejemplo n.º 2
0
        public void TestDigit()
        {
            double[] pattern0 =
            {
                0, 1, 1, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 1, 1, 0
            };
            double[] pattern1 =
            {
                0, 0, 1, 0, 0,
                0, 1, 1, 0, 0,
                0, 0, 1, 0, 0,
                0, 0, 1, 0, 0,
                0, 0, 1, 0, 0
            };
            double[] pattern2 =
            {
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 1, 1, 1, 0,
                0, 1, 0, 0, 0,
                0, 1, 1, 1, 0
            };
            double[] pattern3 =
            {
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 1, 1, 1, 0
            };
            double[] pattern4 =
            {
                0, 1, 0, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 0, 0, 1, 0
            };
            double[] pattern5 =
            {
                0, 1, 1, 1, 0,
                0, 1, 0, 0, 0,
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 1, 1, 1, 0
            };
            double[] pattern6 =
            {
                0, 1, 1, 1, 0,
                0, 1, 0, 0, 0,
                0, 1, 1, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 1, 1, 0
            };
            double[] pattern7 =
            {
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 0, 0, 1, 0,
                0, 0, 1, 0, 0,
                0, 1, 0, 0, 0
            };
            double[] pattern8 =
            {
                0, 1, 1, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 1, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 1, 1, 0
            };
            double[] pattern9 =
            {
                0, 1, 1, 1, 0,
                0, 1, 0, 1, 0,
                0, 1, 1, 1, 0,
                0, 0, 0, 1, 0,
                0, 1, 1, 1, 0
            };

            double[][] _inputPattern =
            {
                pattern0, pattern1, pattern2, pattern3, pattern4,
                pattern5, pattern6, pattern7, pattern8, pattern9
            };
            double[][] _targetOutputPattern =
            {
                new double[] { 0.0 },
                new double[] { 0.1 },
                new double[] { 0.2 },
                new double[] { 0.3 },
                new double[] { 0.4 },
                new double[] { 0.5 },
                new double[] { 0.6 },
                new double[] { 0.7 },
                new double[] { 0.8 },
                new double[] { 0.9 }
            };

            MLPNetworkWithBias network = new MLPNetworkWithBias(25, 25, 1, 0.8);

            network.InitLog("Digit-");

            Random rnd = new Random();

            for (int i = 0; i < 50000; i++)
            {
                //network.BatchTrain(_inputPattern, _targetOutputPattern);

                int index = rnd.Next(0, 10);
                Console.WriteLine("index :" + i);
                network.OnlineTrain(_inputPattern[index], _targetOutputPattern[index]);
            }

            for (int i = 0; i < _inputPattern.Length; i++)
            {
                double[] output = network.Run(_inputPattern[i]);
                Console.WriteLine("{0} pattern = {1:0.000} which is digit {2}", i,
                                  output[0], (int)Math.Round(output[0] * 10));
            }
        }