Ejemplo n.º 1
0
        public BackPropagationNetwork(int[] layerSizes, TransferFunction[] transferFunctions)
        {
            // Validate the input data
            if (transferFunctions.Length != layerSizes.Length || transferFunctions[0] != TransferFunction.None)
            {
                throw new ArgumentException("Cannot construct a network with these parameters.");
            }

            // Initialize network layers
            layerCount = layerSizes.Length - 1;
            inputSize  = layerSizes[0];
            layerSize  = new int[layerCount];

            for (int i = 0; i < layerCount; i++)
            {
                layerSize[i] = layerSizes[i + 1];
            }

            transferFunction = new TransferFunction[layerCount];
            for (int i = 0; i < layerCount; i++)
            {
                transferFunction[i] = transferFunctions[i + 1];
            }

            // Start dimensioning arrays
            bias = new double[layerCount][];
            previousBiasDelta = new double[layerCount][];
            delta             = new double[layerCount][];
            layerOutput       = new double[layerCount][];
            layerInput        = new double[layerCount][];

            weight = new double[layerCount][][];
            previousWeightDelta = new double[layerCount][][];

            // Fill 2 dimensional arrays
            for (int l = 0; l < layerCount; l++)
            {
                bias[l] = new double[layerSize[l]];
                previousBiasDelta[l] = new double[layerSize[l]];
                delta[l]             = new double[layerSize[l]];
                layerOutput[l]       = new double[layerSize[l]];
                layerInput[l]        = new double[layerSize[l]];

                weight[l] = new double[l == 0 ? inputSize : layerSize[l - 1]][];
                previousWeightDelta[l] = new double[l == 0 ? inputSize : layerSize[l - 1]][];

                for (int i = 0; i < (l == 0 ? inputSize : layerSize[l - 1]); i++)
                {
                    weight[l][i] = new double[layerSize[l]];
                    previousWeightDelta[l][i] = new double[layerSize[l]];
                }
            }

            // Initialize the weights
            for (int l = 0; l < layerCount; l++)
            {
                for (int j = 0; j < layerSize[l]; j++)
                {
                    bias[l][j] = Gaussian.GetRandomGaussian();
                    previousBiasDelta[l][j] = 0.0;
                    layerOutput[l][j]       = 0.0;
                    layerInput[l][j]        = 0.0;
                    delta[l][j]             = 0.0;
                }

                for (int i = 0; i < (l == 0 ? inputSize : layerSize[l - 1]); i++)
                {
                    for (int j = 0; j < layerSize[l]; j++)
                    {
                        weight[l][i][j] = Gaussian.GetRandomGaussian();
                        previousWeightDelta[l][i][j] = 0.0;
                    }
                }
            }
        }
Ejemplo n.º 2
0
        public BoltzmanMachine(int[] layerSizes, TransferFunction[] TransferFunctions)
        {
            // Перевірка вхідних даних
            if (TransferFunctions.Length != layerSizes.Length || TransferFunctions[0] != TransferFunction.None)
            {
                throw new ArgumentException("The network cannot be created with these parameters");
            }

            // Ініціалізація шарів мережі
            layerCount       = layerSizes.Length - 1;
            inputSize        = layerSizes[0];
            layerSize        = new int[layerCount];
            transferFunction = new TransferFunction[layerCount];

            for (int i = 0; i < layerCount; i++)
            {
                layerSize[i] = layerSizes[i + 1];
            }

            for (int i = 0; i < layerCount; i++)
            {
                transferFunction[i] = TransferFunctions[i + 1];
            }

            // Визначення вимірів масивів
            bias             = new double[layerCount][];
            previosBiasDelta = new double[layerCount][];
            delta            = new double[layerCount][];
            layerOtput       = new double[layerCount][];
            layerInput       = new double[layerCount][];

            weight = new double[layerCount][][];
            previousWeightDelta = new double[layerCount][][];

            // Заповнення двовимірних масивів
            for (int l = 0; l < layerCount; l++)
            {
                bias[l]             = new double[layerSize[l]];
                previosBiasDelta[l] = new double[layerSize[l]];
                delta[l]            = new double[layerSize[l]];
                layerOtput[l]       = new double[layerSize[l]];
                layerInput[l]       = new double[layerSize[l]];

                weight[l] = new double[l == 0 ? inputSize : layerSize[l - 1]][];
                previousWeightDelta[l] = new double[l == 0 ? inputSize : layerSize[l - 1]][];

                for (int i = 0; i < (l == 0 ? inputSize : layerSize[l - 1]); i++)
                {
                    weight[l][i] = new double[layerSize[l]];
                    previousWeightDelta[l][i] = new double[layerSize[l]];
                }
            }

            // Ініціалізація ваг
            for (int l = 0; l < layerCount; l++)
            {
                for (int i = 0; i < layerSize[l]; i++)
                {
                    bias[l][i]             = Gaussian.GetRandomGaussian();
                    previosBiasDelta[l][i] = 0.0;
                    layerInput[l][i]       = 0.0;
                    layerOtput[l][i]       = 0.0;
                    delta[l][i]            = 0.0;
                }

                for (int i = 0; i < (l == 0 ? inputSize : layerSize[l - 1]); i++)
                {
                    for (int j = 0; j < layerSize[l]; j++)
                    {
                        weight[l][i][j] = Gaussian.GetRandomGaussian();
                        previousWeightDelta[l][i][j] = 0.0;
                    }
                }
            }
        }