Ejemplo n.º 1
0
        public ModifiedFuzzyARTMap(int inputSize, int numberOfClasses,
                                   double choicingParam, double basedVigilance, double maximumEntropy,
                                   double maximumTotalEntropy, double vigilanceAdjustRate, double weightAdjustRate)
        {
            mm  = new ModifiedMapField(numberOfClasses);
            esa = new EntropyStatsAlgorithms(mm);

            tf = new DataTransformChain();
            tf.AppendDataTransform(new OneOfNDataTransform(numberOfClasses));
            tf.AppendDataTransform(new ComplementDataTransform(1.0));

            rtf = new DataTransformChain();
            rtf.AppendDataTransform(new UnComplementDataTransform());
            rtf.AppendDataTransform(new ReverseOneOfNDataTransform(numberOfClasses));

            this.inputSize           = inputSize;
            this.targetSize          = numberOfClasses * 2;
            this.numberOfClasses     = numberOfClasses;
            this.choicingParam       = choicingParam;
            this.basedVigilance      = basedVigilance;
            this.MaximumEntropy      = maximumEntropy;
            this.maximumTotalEntropy = maximumTotalEntropy;
            this.vigilanceAdjustRate = vigilanceAdjustRate;
            this.weightAdjustRate    = weightAdjustRate;

            vigilances            = new double[0];
            categoryTargetClasses = new int[0];
            categories            = new double[0][];

            // Create unprediction output
            NONPREDICT_OUTPUT = new double[targetSize];
        }
Ejemplo n.º 2
0
        public ModifiedFuzzyARTMap(int inputSize, int numberOfClasses, 
            double choicingParam, double basedVigilance, double maximumEntropy,
            double maximumTotalEntropy, double vigilanceAdjustRate, double weightAdjustRate)
        {
            mm = new ModifiedMapField(numberOfClasses);
            esa = new EntropyStatsAlgorithms(mm);

            tf = new DataTransformChain();
            tf.AppendDataTransform(new OneOfNDataTransform(numberOfClasses));
            tf.AppendDataTransform(new ComplementDataTransform(1.0));

            rtf = new DataTransformChain();
            rtf.AppendDataTransform(new UnComplementDataTransform());
            rtf.AppendDataTransform(new ReverseOneOfNDataTransform(numberOfClasses));

            this.inputSize = inputSize;
            this.targetSize = numberOfClasses*2;
            this.numberOfClasses = numberOfClasses;
            this.choicingParam = choicingParam;
            this.basedVigilance = basedVigilance;
            this.MaximumEntropy = maximumEntropy;
            this.maximumTotalEntropy = maximumTotalEntropy;
            this.vigilanceAdjustRate = vigilanceAdjustRate;
            this.weightAdjustRate = weightAdjustRate;

            vigilances = new double[0];
            categoryTargetClasses = new int[0];
            categories = new double[0][];

            // Create unprediction output
            NONPREDICT_OUTPUT = new double[targetSize];
        }