Ejemplo n.º 1
0
        /*****************************************************************************
        *  FUNCTION:  GetPPCCoefficients
        *  Description:
        *  Parameters:
        *          pItemIndex -
        *****************************************************************************/
        public Dictionary <int, Double> GetPPCCoefficients(int pItemIndex)
        {
            Dictionary <int, Double> return_list = new Dictionary <int, Double>();
            int i, hash_key;

            for (i = 0; i < constituents.Count(); i++)
            {
                if (i != pItemIndex && CorrelationCoefficients != null)
                {
                    hash_key = Helpers.getHash(i + 1, pItemIndex + 1, this.constituents.Count());
                    return_list.Add(i, CorrelationCoefficients[hash_key]);
                }
            }

            return(return_list);
        }
Ejemplo n.º 2
0
        /*****************************************************************************
        *  FUNCTION:       ShiftedPearsonProductCoefficient
        *
        *  Description:    Calculates the Pearson Product Coefficient (PPC) for each
        *                  Equity in pInputList based on it's HistoricalPrice list, against
        *                  every other Equity in pInputList, after shifting its HistoricalPrice
        *                  left by pShiftValue.
        *
        *                  The intent is to find a predictive correlation.
        *                  ie. if one price-series tends to lag another by 1 trading day
        *                  (in terms of its trend), then shifting that series left by 1 and
        *                  calculating the PPC with the other series ought to yield a strong
        *                  PPC correlation. See Helpers.PearsonProductCoefficient() for the
        *                  normal PPC calculation.
        *
        *  Parameters:
        *      pInputList  - the input data, consisting of multiple Equity instances
        *      pShiftValue - the number of HistoricalPriceDates to shift data by before
        *                    computing the PPC.
        *****************************************************************************/
        public static Double[,] ShiftedPearsonProductCoefficient(List <Equity> pInputList, int pShiftValue)
        {
            int    N, cSize, i, j, k, count, key1, key2;
            Double coeff, numerator, denominator;
            Double sumSqRange1, sumSqRange2, meanRange1, meanRange2;

            Double[,] CorrelationCoefficients;
            List <Equity> temp_list;

            N     = pInputList.Count();
            cSize = N * (N - 1) / 2;

            CorrelationCoefficients = new Double[cSize, 2];

            if (N > 0 && pShiftValue >= 0 && pShiftValue < N)
            {
                count = 1;
                for (i = 0; i < N; i++)
                {
                    coeff       = 0;
                    denominator = 0;
                    meanRange1  = 0;
                    meanRange2  = 0;

                    temp_list = new List <Equity>(pInputList);
                    temp_list[i].TrimDataLeft(pShiftValue);

                    for (j = 0; j < N; j++)
                    {
                        temp_list[j].TrimDataRight(pShiftValue);

                        if (j >= i)
                        {
                            key2 = 0;
                        }
                        else
                        {
                            key2 = 1;
                        }

                        if (pInputList[i].HistoricalPrice.Count() == pInputList[j].HistoricalPrice.Count())
                        {
                            sumSqRange1 = 0;
                            sumSqRange2 = 0;
                            numerator   = 0;
                            meanRange1  = pInputList[i].avgPrice;
                            meanRange2  = pInputList[j].avgPrice;

                            for (k = 0; k < pInputList[j].HistoricalPrice.Count(); k++)
                            {
                                sumSqRange1 += Math.Pow(pInputList[i].HistoricalPrice[k], 2);
                                sumSqRange2 += Math.Pow(pInputList[j].HistoricalPrice[k], 2);
                                numerator   += (pInputList[i].HistoricalPrice[k] * pInputList[j].HistoricalPrice[k]);
                            }
                            numerator  -= (pInputList[j].HistoricalPrice.Count() * meanRange1 * meanRange2);
                            denominator = Math.Pow((sumSqRange1 - (pInputList[i].HistoricalPrice.Count() * Math.Pow(meanRange1, 2))), 0.5) *
                                          Math.Pow((sumSqRange2 - (pInputList[j].HistoricalPrice.Count() * Math.Pow(meanRange2, 2))), 0.5);
                            coeff = numerator / denominator;
                        }

                        key1 = Helpers.getHash(i + 1, j + 1, pInputList.Count());
                        CorrelationCoefficients[key1, key2] = coeff;
                    }
                    temp_list.Clear();
                    count++;
                }
            }

            return(CorrelationCoefficients);
        }