Ejemplo n.º 1
0
        //-----------------------------------------------------------------------
        //
        //ORIGINAL LINE: void _findAllIntersections(const Shape& STLAllocator<U, AllocPolicy>, List<IntersectionInShape>& intersections) const
        private void _findAllIntersections(Shape other, ref std_vector<IntersectionInShape> intersections) {
            for (ushort i = 0; i < getSegCount(); i++) {
                Segment2D seg1 = new Segment2D(getPoint(i), getPoint(i + 1));

                for (ushort j = 0; j < other.getSegCount(); j++) {
                    Segment2D seg2 = new Segment2D(other.getPoint(j), other.getPoint(j + 1));

                    Vector2 intersect = new Vector2();
                    if (seg1.findIntersect(seg2, ref intersect)) {
                        IntersectionInShape inter = new IntersectionInShape(i, j, intersect);
                        // check if intersection is "borderline" : too near to a vertex
                        if ((seg1.mA - intersect).SquaredLength < 1e-8) {
                            inter.onVertex[0] = true;
                        }
                        if ((seg1.mB - intersect).SquaredLength < 1e-8) {
                            inter.onVertex[0] = true;
                            inter.index[0]++;
                        }
                        if ((seg2.mA - intersect).SquaredLength < 1e-8) {
                            inter.onVertex[1] = true;
                        }
                        if ((seg2.mB - intersect).SquaredLength < 1e-8) {
                            inter.onVertex[1] = true;
                            inter.index[1]++;
                        }

                        intersections.push_back(inter);
                    }
                }
            }
        }
Ejemplo n.º 2
0
        //-----------------------------------------------------------------------
        //
        //ORIGINAL LINE: MultiShape _booleanOperation(const Shape& STLAllocator<U, AllocPolicy>, BooleanOperationType opType) const
        private MultiShape _booleanOperation(Shape other, BooleanOperationType opType) {
            if (!mClosed || mPoints.size() < 2)
                OGRE_EXCEPT("Ogre::Exception::ERR_INVALID_STATE", "Current shapes must be closed and has to contain at least 2 points!", "Procedural::Shape::_booleanOperation(const Procedural::Shape&, Procedural::BooleanOperationType)");
            if (!other.mClosed || other.mPoints.size() < 2)
                OGRE_EXCEPT("Ogre::Exception::ERR_INVALIDPARAMS", "Other shapes must be closed and has to contain at least 2 points!", "Procedural::Shape::_booleanOperation(const Procedural::Shape&, Procedural::BooleanOperationType)");
            ;

            // Compute the intersection between the 2 shapes
            std_vector<IntersectionInShape> intersections = new std_vector<IntersectionInShape>();
            _findAllIntersections(other, ref intersections);

            // Build the resulting shape
            if (intersections.empty()) {
                if (isPointInside(other.getPoint(0))) {
                    // Shape B is completely inside shape A
                    if (opType == BooleanOperationType.BOT_UNION) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(this);
                        return ms;
                    }
                    else if (opType == BooleanOperationType.BOT_INTERSECTION) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(other);
                        return ms;
                    }
                    else if (opType == BooleanOperationType.BOT_DIFFERENCE) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(this);
                        ms.addShape(other);
                        ms.getShape(1).switchSide();
                        return ms;
                    }

                }
                else if (other.isPointInside(getPoint(0))) {
                    // Shape A is completely inside shape B
                    if (opType == BooleanOperationType.BOT_UNION) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(other);
                        return ms;
                    }
                    else if (opType == BooleanOperationType.BOT_INTERSECTION) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(this);
                        return ms;
                    }
                    else if (opType == BooleanOperationType.BOT_DIFFERENCE) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(this);
                        ms.addShape(other);
                        ms.getShape(0).switchSide();
                        return ms;
                    }
                }
                else {
                    if (opType == BooleanOperationType.BOT_UNION) {
                        MultiShape ms = new MultiShape();
                        ms.addShape(this);
                        ms.addShape(other);
                        return ms;
                    }
                    else if (opType == BooleanOperationType.BOT_INTERSECTION)
                        return new MultiShape(); //empty result
                    else if (opType == BooleanOperationType.BOT_DIFFERENCE)
                        return new MultiShape(); //empty result
                }
            }
            MultiShape outputMultiShape = new MultiShape();

            Shape[] inputShapes = new Shape[2];
            inputShapes[0] = this;
            inputShapes[1] = other;

            while (!intersections.empty()) {
                Shape outputShape = new Shape();
                byte shapeSelector = 0; // 0 : first shape, 1 : second shape

                Vector2 currentPosition = intersections[0].position;//intersections.GetEnumerator().position;
                IntersectionInShape firstIntersection = intersections[0];//*intersections.GetEnumerator();
                uint currentSegment = firstIntersection.index[shapeSelector];
                //C++ TO C# CONVERTER TODO TASK: There is no direct equivalent to the STL vector 'erase' method in C#:
                //intersections.erase(intersections.GetEnumerator());//ÒƳý
                intersections.erase(firstIntersection, true);
                outputShape.addPoint(currentPosition);

                sbyte isIncreasing = 0; // +1 if increasing, -1 if decreasing, 0 if undefined

                if (!_findWhereToGo(inputShapes, opType, firstIntersection, ref shapeSelector, ref isIncreasing, ref currentSegment)) {
                    // That intersection is located on a place where the resulting shape won't go => discard
                    continue;
                }

                while (true) {
                    // find the closest intersection on the same segment, in the correct direction
                    //List<IntersectionInShape>.Enumerator found_next_intersection = intersections.end();
                    IntersectionInShape found_next_intersection = intersections[intersections.Count - 1];
                    int found_next_intersection_pos = -1;
                    float distanceToNextIntersection = float.MaxValue;// std.numeric_limits<Real>.max();

                    uint nextPoint = currentSegment + (uint)(isIncreasing == 1 ? 1 : 0);
                    bool nextPointIsOnIntersection = false;

                    //for (List<IntersectionInShape>.Enumerator it = intersections.GetEnumerator(); it.MoveNext(); ++it)
                    for (int i = 0; i < intersections.Count; i++) {
                        IntersectionInShape it = intersections[i];
                        if (currentSegment == it.index[shapeSelector]) {
                            if (((it.position - currentPosition).DotProduct(it.position - inputShapes[shapeSelector].getPoint((int)nextPoint)) < 0f) || (it.onVertex[shapeSelector] && nextPoint == it.index[shapeSelector])) {
                                // found an intersection between the current one and the next segment point
                                float d = (it.position - currentPosition).Length;
                                if (d < distanceToNextIntersection) {
                                    // check if we have the nearest intersection
                                    found_next_intersection = it;
                                    found_next_intersection_pos = i;
                                    distanceToNextIntersection = d;
                                }
                            }
                        }
                        if (nextPoint == it.index[shapeSelector] && it.onVertex[shapeSelector])
                            nextPointIsOnIntersection = true;
                    }

                    // stop condition
                    if (currentSegment == firstIntersection.index[shapeSelector]) {
                        // we found ourselves on the same segment as the first intersection and no other
                        if ((firstIntersection.position - currentPosition).DotProduct(firstIntersection.position - inputShapes[shapeSelector].getPoint((int)nextPoint)) < 0f) {
                            float d = (firstIntersection.position - currentPosition).Length;
                            if (d > 0.0f && d < distanceToNextIntersection) {
                                outputShape.close();
                                break;
                            }
                        }
                    }

                    // We actually found the next intersection => change direction and add current intersection to the list
                    //if (found_next_intersection.MoveNext())
                    //if (intersections.Count > 1) {
                    if (found_next_intersection_pos != -1) {
                        //IntersectionInShape currentIntersection = found_next_intersection.Current;
                        IntersectionInShape currentIntersection = found_next_intersection;

                        intersections.erase(found_next_intersection, true);
                        //IntersectionInShape currentIntersection = intersections[intersections.Count - 1];
                        outputShape.addPoint(currentIntersection.position);
                        bool result = _findWhereToGo(inputShapes, opType, currentIntersection, ref shapeSelector, ref isIncreasing, ref currentSegment);
                        if (result == null) {
                            OGRE_EXCEPT("Ogre::Exception::ERR_INTERNAL_ERROR", "We should not be here!", "Procedural::Shape::_booleanOperation(const Procedural::Shape&, Procedural::BooleanOperationType)");
                            ;
                        }
                    }
                    else {
                        // no intersection found for the moment => just continue on the current segment
                        if (!nextPointIsOnIntersection) {
                            if (isIncreasing == 1)
                                currentPosition = inputShapes[shapeSelector].getPoint((int)currentSegment + 1);
                            else
                                currentPosition = inputShapes[shapeSelector].getPoint((int)currentSegment);

                            outputShape.addPoint(currentPosition);
                        }
                        currentSegment = (uint)Utils.modulo((int)currentSegment + isIncreasing, inputShapes[shapeSelector].getSegCount());
                    }
                }

                outputMultiShape.addShape(outputShape);
            }
            return outputMultiShape;
        }
//    *
//	 * Build a MultiShape from chars (one Shape per character)
//	 * \exception Ogre::InternalErrorException Freetype error
//	 * \todo Need to split shapes of multi region chars. For example the letter \c O
//	 * has two shapes, but they are connected to one shape.
//	 
	public MultiShape realizeShapes()
	{
		MultiShape retVal = new MultiShape();
	
		FT_Library ftlib = new FT_Library();
		FT_Face face = new FT_Face();
		FT_GlyphSlot slot = new FT_GlyphSlot();
	
		FT_Error error = FT_Init_FreeType(ftlib);
		if (error == 0)
		{
			error = FT_New_Face(ftlib, getFontFileByName().c_str(), 0, face);
			if (error == FT_Err_Unknown_File_Format)
			{
	//C++ TO C# CONVERTER TODO TASK: There is no direct equivalent in C# to the C++ __LINE__ macro:
	//C++ TO C# CONVERTER TODO TASK: There is no direct equivalent in C# to the C++ __FILE__ macro:
				throw ExceptionFactory.create(Mogre.ExceptionCodeType<Mogre.Exception.ExceptionCodes.ERR_INTERNAL_ERROR>(), "FreeType ERROR: FT_Err_Unknown_File_Format", "Procedural::TextShape::realizeShapes()", __FILE__, __LINE__);
				;
			}
			else if (error != null)
			{
	//C++ TO C# CONVERTER TODO TASK: There is no direct equivalent in C# to the C++ __LINE__ macro:
	//C++ TO C# CONVERTER TODO TASK: There is no direct equivalent in C# to the C++ __FILE__ macro:
				throw ExceptionFactory.create(Mogre.ExceptionCodeType<Mogre.Exception.ExceptionCodes.ERR_INTERNAL_ERROR>(), "FreeType ERROR: FT_New_Face - " + StringConverter.toString(error), "Procedural::TextShape::realizeShapes()", __FILE__, __LINE__);
				;
			}
			else
			{
				FT_Set_Pixel_Sizes(face, 0, mFontSize);
	
				int px = 0;
				int py = 0;
				slot = face.glyph;
	
				for (int n = 0; n < mText.length(); n++)
				{
					error = FT_Load_Char(face, mText[n], FT_LOAD_NO_BITMAP);
					if (error != null)
						continue;
	
					Shape s = new Shape();
	
					int nContours = face.glyph.outline.n_contours;
					int startPos = 0;
					string tags = face.glyph.outline.tags;
					FT_Vector[] vec = face.glyph.outline.points;
	
					for (int k = 0; k < nContours; k++)
					{
						if (k > 0)
							startPos = face.glyph.outline.contours[k-1]+1;
						int endPos = face.glyph.outline.contours[k]+1;
	
						Vector2 lastPoint = Vector2.ZERO;
						for (int j = startPos; j < endPos; j++)
						{
							if (FT_CURVE_TAG(tags[j]) == FT_CURVE_TAG_ON)
							{
								lastPoint = Vector2((float)vec[j].x, (float)vec[j].y);
								s.addPoint(lastPoint / 64.0f);
							}
							else
							{
								if (FT_CURVE_TAG(tags[j]) == FT_CURVE_TAG_CUBIC)
								{
									int prevPoint = j - 1;
									if (j == 0)
										prevPoint = endPos - 1;
									int nextIndex = j + 1;
									if (nextIndex >= endPos)
										nextIndex = startPos;
									Vector2[] nextPoint = new Vector2[nextIndex]((float)vec.x, (float)vec[nextIndex].y);
									if ((FT_CURVE_TAG(tags[prevPoint]) != FT_CURVE_TAG_ON) && (FT_CURVE_TAG(tags[prevPoint]) == FT_CURVE_TAG_CUBIC))
									{
										BezierCurve2 bc = new BezierCurve2();
										bc.addPoint(Vector2((float)vec[prevPoint].x, (float)vec[prevPoint].y) / 64.0f);
										bc.addPoint(Vector2((float)vec[j].x, (float)vec[j].y) / 64.0f);
										bc.addPoint(Vector2((float)vec[nextIndex].x, (float)vec[nextIndex].y) / 64.0f);
										s.appendShape(bc.realizeShape());
									}
								}
								else
								{
									Vector2[] conicPoint = new Vector2[j]((float)vec.x, (float)vec[j].y);
									if (j == startPos)
									{
										if ((FT_CURVE_TAG(tags[endPos-1]) != FT_CURVE_TAG_ON) && (FT_CURVE_TAG(tags[endPos-1]) != FT_CURVE_TAG_CUBIC))
										{
											Vector2[] lastConnic = new Vector2[endPos - 1]((float)vec.x, (float)vec[endPos - 1].y);
											lastPoint = (conicPoint + lastConnic) / 2;
										}
									}
	
									int nextIndex = j + 1;
									if (nextIndex >= endPos)
										nextIndex = startPos;
	
									Vector2[] nextPoint = new Vector2[nextIndex]((float)vec.x, (float)vec[nextIndex].y);
	
									bool nextIsConnic = (FT_CURVE_TAG(tags[nextIndex]) != FT_CURVE_TAG_ON) && (FT_CURVE_TAG(tags[nextIndex]) != FT_CURVE_TAG_CUBIC);
									if (nextIsConnic)
										nextPoint = (conicPoint + nextPoint) / 2;
	
									int pc = s.getPointCount();
									BezierCurve2 bc = new BezierCurve2();
									if (pc == 0)
										bc.addPoint(Vector2.ZERO);
									else
										bc.addPoint(s.getPoint(pc - 1));
									bc.addPoint(lastPoint / 64.0f);
									bc.addPoint(conicPoint / 64.0f);
									bc.addPoint(nextPoint / 64.0f);
									if (pc == 0)
										s.appendShape(bc.realizeShape());
									else
									{
										List<Vector2> subShape = bc.realizeShape().getPoints();
										for (List<Vector2>.Enumerator iter = subShape.GetEnumerator(); iter.MoveNext(); iter++)
										{
											if (iter != subShape.GetEnumerator())
												s.addPoint(iter.Current);
										}
									}
	
									if (nextIsConnic)
//
//ORIGINAL LINE: lastPoint = nextPoint;
										lastPoint=(nextPoint);
								}
							}
						}
					}
	
					s.close();
					s.translate((float)px, (float)py);
					retVal.addShape(s);
	
					px += slot.advance.x >> 6;
					py += slot.advance.y >> 6;
				}
				FT_Done_Face(face);
			}
			FT_Done_FreeType(ftlib);
		}
		else
		{
	//C++ TO C# CONVERTER TODO TASK: There is no direct equivalent in C# to the C++ __LINE__ macro:
	//C++ TO C# CONVERTER TODO TASK: There is no direct equivalent in C# to the C++ __FILE__ macro:
			throw ExceptionFactory.create(Mogre.ExceptionCodeType<Mogre.Exception.ExceptionCodes.ERR_INTERNAL_ERROR>(), "FreeType ERROR: FT_Init_FreeTyp", "Procedural::TextShape::realizeShapes()", __FILE__, __LINE__);
			;
		}
	
		return retVal;
	}