Ejemplo n.º 1
0
        /// <summary>
        /// Runs inference on Kon model for a batch of inputs.
        /// The shape of each input is the same as that for the non-batch case above.
        /// </summary>
        public IEnumerable <IEnumerable <string> > Infer(IEnumerable <IEnumerable <float> > dataBatch)
        {
            List <float> dataCombined = new List <float>();

            foreach (var input in dataBatch)
            {
                dataCombined.AddRange(input);
            }

            List <Tensor> result = manager.RunModel(
                modelName,
                int.MaxValue,
                inferInputNames,
                new List <Tensor> {
                new Tensor(dataCombined, new List <long> {
                    dataBatch.LongCount(), 3, 227, 227
                })
            },
                inferOutputNames
                );

            List <string> r0 = new List <string>();

            result[0].CopyTo(r0);

            List <List <string> > results = new List <List <string> >();

            results.Add(r0);

            return(results);
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Runs inference on Bear model for a batch of inputs.
        /// The shape of each input is the same as that for the non-batch case above.
        /// </summary>
        public IEnumerable <IEnumerable <string> > Infer(IEnumerable <IEnumerable <float> > dataBatch)
        {
            List <float> dataCombined = new List <float>();
            long         batchCount   = 0;

            foreach (var input in dataBatch)
            {
                dataCombined.AddRange(input);
                ++batchCount;
            }

            List <Tensor> result = manager.RunModel(
                modelName,
                int.MaxValue,
                inferInputNames,
                new List <Tensor> {
                new Tensor(dataCombined, new List <long> {
                    batchCount, 3, 227, 227
                })
            },
                inferOutputNames
                );

            int classLabelBatchNum  = (int)result[0].GetShape()[0];
            int classLabelBatchSize = (int)result[0].GetShape().Aggregate((a, x) => a * x) / classLabelBatchNum;

            for (int batchNum = 0, offset = 0; batchNum < classLabelBatchNum; batchNum++, offset += classLabelBatchSize)
            {
                List <string> tmp = new List <string>();
                result[0].CopyTo(tmp, offset, classLabelBatchSize);
                yield return(tmp);
            }
        }