/// <summary>
 /// Sets the traits, biases and thresholds to the product of two parameter distributions.
 /// </summary>
 /// <param name="firstFactor">The first factor.</param>
 /// <param name="secondFactor">The second factor.</param>
 /// <remarks>This method does not affect the user and item features.</remarks>
 public void SetEntityParametersToProduct(ParameterDistributions firstFactor, ParameterDistributions secondFactor)
 {
     this.UserTraitDistribution.SetToProduct(firstFactor.UserTraitDistribution, secondFactor.UserTraitDistribution);
     this.UserBiasDistribution.SetToProduct(firstFactor.UserBiasDistribution, secondFactor.UserBiasDistribution);
     this.UserThresholdDistribution.SetToProduct(firstFactor.UserThresholdDistribution, secondFactor.UserThresholdDistribution);
     this.ItemTraitDistribution.SetToProduct(firstFactor.ItemTraitDistribution, secondFactor.ItemTraitDistribution);
     this.ItemBiasDistribution.SetToProduct(firstFactor.ItemBiasDistribution, secondFactor.ItemBiasDistribution);
 }
 /// <summary>
 /// Sets the traits, biases and thresholds to the power of a parameter distributions.
 /// </summary>
 /// <param name="value">The base.</param>
 /// <param name="exponent">The exponent.</param>
 /// <remarks>This method does not affect the user and item features.</remarks>
 public void SetEntityParametersToPower(ParameterDistributions value, double exponent)
 {
     this.UserTraitDistribution.SetToPower(value.UserTraitDistribution, exponent);
     this.UserBiasDistribution.SetToPower(value.UserBiasDistribution, exponent);
     this.UserThresholdDistribution.SetToPower(value.UserThresholdDistribution, exponent);
     this.ItemTraitDistribution.SetToPower(value.ItemTraitDistribution, exponent);
     this.ItemBiasDistribution.SetToPower(value.ItemBiasDistribution, exponent);
 }
 /// <summary>
 /// Sets the traits, biases and thresholds to represent the ratio of two parameter distributions.
 /// </summary>
 /// <param name="numerator">The numerator parameter distribution.</param>
 /// <param name="denominator">The denominator parameter distribution.</param>
 /// <param name="forceProper">A flag indicating whether or not to force proper messages.</param>
 /// <remarks>This method does not affect the user and item features.</remarks>
 public void SetEntityParametersToRatio(ParameterDistributions numerator, ParameterDistributions denominator, bool forceProper = true)
 {
     this.UserTraitDistribution.SetToRatio(numerator.UserTraitDistribution, denominator.UserTraitDistribution, forceProper);
     this.UserBiasDistribution.SetToRatio(numerator.UserBiasDistribution, denominator.UserBiasDistribution, forceProper);
     this.UserThresholdDistribution.SetToRatio(numerator.UserThresholdDistribution, denominator.UserThresholdDistribution, forceProper);
     this.ItemTraitDistribution.SetToRatio(numerator.ItemTraitDistribution, denominator.ItemTraitDistribution, forceProper);
     this.ItemBiasDistribution.SetToRatio(numerator.ItemBiasDistribution, denominator.ItemBiasDistribution, forceProper);
 }
Ejemplo n.º 4
0
 /// <summary>
 /// Initializes the per-user and per-item model parameters.
 /// </summary>
 /// <param name="initializers">The parameters to initialize to.</param>
 /// <remarks>
 /// The per-entity parameter initialization is required for correct reconstruction of the
 /// intermediate messages by the special first iteration. The initializers have to contain
 /// the corresponding posteriors from the last iteration. Note that feature-related parameters
 /// do not need to be initialized, because messages to the features are not reconstructed by
 /// the special first iteration.
 /// </remarks>
 public void InitializeEntityParameters(ParameterDistributions initializers)
 {
     this.inferenceAlgorithm.UserTraitsInitializer     = initializers.UserTraitDistribution;
     this.inferenceAlgorithm.UserBiasInitializer       = initializers.UserBiasDistribution;
     this.inferenceAlgorithm.UserThresholdsInitializer = initializers.UserThresholdDistribution;
     this.inferenceAlgorithm.ItemTraitsInitializer     = initializers.ItemTraitDistribution;
     this.inferenceAlgorithm.ItemBiasInitializer       = initializers.ItemBiasDistribution;
 }
Ejemplo n.º 5
0
 /// <summary>
 /// Constrains the per-user and per-item model parameters.
 /// </summary>
 /// <param name="constraints">The parameters to constrain to.</param>
 /// <remarks>
 /// The per-entity parameters are constrained to their corresponding output messages
 /// (or more concretely, to the marginal divided by the prior). This is required in
 /// order to carry message information over several batches of the data.
 /// </remarks>
 public void ConstrainEntityParameters(ParameterDistributions constraints)
 {
     this.inferenceAlgorithm.UserTraitsMessage     = constraints.UserTraitDistribution;
     this.inferenceAlgorithm.UserBiasMessage       = constraints.UserBiasDistribution;
     this.inferenceAlgorithm.UserThresholdsMessage = constraints.UserThresholdDistribution;
     this.inferenceAlgorithm.ItemTraitsMessage     = constraints.ItemTraitDistribution;
     this.inferenceAlgorithm.ItemBiasMessage       = constraints.ItemBiasDistribution;
 }
Ejemplo n.º 6
0
        /// <summary>
        /// Gets the parameter distributions of the average item.
        /// </summary>
        /// <param name="parameterDistributions">The learned posterior parameter distributions.</param>
        /// <param name="itemFeatures">The item features.</param>
        /// <returns>The average item parameter distributions.</returns>
        public static ItemParameterDistribution GetAverageItemParameters(
            ParameterDistributions parameterDistributions, SparseFeatureMatrix itemFeatures)
        {
            GaussianArray traitDistribution;
            Gaussian      biasDistribution;

            GetAverageTraitsAndBiases(
                parameterDistributions.ItemTraitDistribution,
                parameterDistributions.ItemBiasDistribution,
                parameterDistributions.ItemFeature.TraitWeights,
                parameterDistributions.ItemFeature.BiasWeights,
                itemFeatures,
                out traitDistribution,
                out biasDistribution);

            return(new ItemParameterDistribution(traitDistribution, biasDistribution));
        }
Ejemplo n.º 7
0
        /// <summary>
        /// Gets the parameter distributions of the average user.
        /// </summary>
        /// <param name="parameterDistributions">The learned posterior parameter distributions.</param>
        /// <param name="userFeatures">The user features.</param>
        /// <returns>The average user parameter distributions.</returns>
        public static UserParameterDistribution GetAverageUserParameters(
            ParameterDistributions parameterDistributions, SparseFeatureMatrix userFeatures)
        {
            GaussianArray traitDistribution;
            Gaussian      biasDistribution;
            GaussianArray thresholdDistribution = GetAverageParameterVector(parameterDistributions.UserThresholdDistribution);

            GetAverageTraitsAndBiases(
                parameterDistributions.UserTraitDistribution,
                parameterDistributions.UserBiasDistribution,
                parameterDistributions.UserFeature.TraitWeights,
                parameterDistributions.UserFeature.BiasWeights,
                userFeatures,
                out traitDistribution,
                out biasDistribution);

            return(new UserParameterDistribution(traitDistribution, biasDistribution, thresholdDistribution));
        }