Ejemplo n.º 1
0
        /// <summary>
        /// Creates a new instance out of a parameter info, presumably fetched from a user specified delegate.
        /// </summary>
        /// <typeparam name="TTupleShape">The static tuple-shape type</typeparam>
        /// <param name="info">The parameter info on the method, whose type should be
        /// <typeparamref name="TTupleShape"/></param>
        /// <returns>A new instance with names and members types enumerated</returns>
        public static StaticSchemaShape Make <TTupleShape>(ParameterInfo info)
        {
            Contracts.AssertValue(info);
            var pairs = StaticPipeInternalUtils.GetNamesTypes <TTupleShape, PipelineColumn>(info);

            return(new StaticSchemaShape(pairs));
        }
Ejemplo n.º 2
0
        GeneralFunctionAnalyzer <TIn, TDelegateInput, TTupleOutShape>(
            IHostEnvironment env,
            IChannel ch,
            TDelegateInput input,
            ReaderReconciler <TIn> baseReconciler,
            Func <TDelegateInput, TTupleOutShape> mapper,
            out IEstimator <ITransformer> estimator,
            Func <PipelineColumn, string> inputNameFunction)
        {
            Contracts.CheckValue(mapper, nameof(mapper));

            var method = mapper.Method;
            var output = mapper(input);

            KeyValuePair <string, PipelineColumn>[] outPairs = StaticPipeInternalUtils.GetNamesValues(output, method.ReturnParameter);

            // Map where the key depends on the set of things in the value. The value contains the yet unresolved dependencies.
            var keyDependsOn = new Dictionary <PipelineColumn, HashSet <PipelineColumn> >();
            // Map where the set of things in the value depend on the key.
            var dependsOnKey = new Dictionary <PipelineColumn, HashSet <PipelineColumn> >();
            // The set of columns detected with zero dependencies.
            var zeroDependencies = new List <PipelineColumn>();

            // First we build up the two structures above, using a queue and visiting from the outputs up.
            var toVisit = new Queue <PipelineColumn>(outPairs.Select(p => p.Value));

            while (toVisit.Count > 0)
            {
                var col = toVisit.Dequeue();
                ch.CheckParam(col != null, nameof(mapper), "The delegate seems to have null columns returned somewhere in the pipe");
                if (keyDependsOn.ContainsKey(col))
                {
                    continue; // Already visited.
                }
                var dependsOn = new HashSet <PipelineColumn>();
                foreach (var dep in col.Dependencies ?? Enumerable.Empty <PipelineColumn>())
                {
                    dependsOn.Add(dep);
                    if (!dependsOnKey.TryGetValue(dep, out var dependsOnDep))
                    {
                        dependsOnKey[dep] = dependsOnDep = new HashSet <PipelineColumn>();
                        toVisit.Enqueue(dep);
                    }
                    dependsOnDep.Add(col);
                }
                keyDependsOn[col] = dependsOn;
                if (dependsOn.Count == 0)
                {
                    zeroDependencies.Add(col);
                }
            }

            // Get the base input columns.
            var baseInputs = keyDependsOn.Select(p => p.Key).Where(col => col.ReconcilerObj == baseReconciler).ToArray();

            // The columns that utilize the base reconciler should have no dependencies. This could only happen if
            // the caller of this function has introduced a situation whereby they are claiming they can reconcile
            // to a data-reader object but still have input data dependencies, which does not make sense and
            // indicates that there is a bug in that component code. Unfortunately we can only detect that condition,
            // not determine exactly how it arose, but we can still do so to indicate to the user that there is a
            // problem somewhere in the stack.
            ch.CheckParam(baseInputs.All(col => keyDependsOn[col].Count == 0),
                          nameof(input), "Bug detected where column producing object was yielding columns with dependencies.");

            // This holds the mappings of columns to names and back. Note that while the same column could be used on
            // the *output*, e.g., you could hypothetically have `(a: r.Foo, b: r.Foo)`, we treat that as the last thing
            // that is done.
            var nameMap = new BidirectionalDictionary <string, PipelineColumn>();

            // Check to see if we have any set of initial names. This is important in the case where we are mapping
            // in an input data view.
            foreach (var col in baseInputs)
            {
                string inputName = inputNameFunction(col);
                if (inputName != null)
                {
                    ch.Assert(!nameMap.ContainsKey(col));
                    ch.Assert(!nameMap.ContainsKey(inputName));
                    nameMap[col] = inputName;

                    ch.Trace($"Using input with name {inputName}");
                }
            }

            estimator = null;
            var toCopy = new List <(string src, string dst)>();

            int tempNum = 0;

            // For all outputs, get potential name collisions with used inputs. Resolve by assigning the input a temporary name.
            foreach (var p in outPairs)
            {
                // If the name for the output is already used by one of the inputs, and this output column does not
                // happen to have the same name, then we need to rename that input to keep it available.
                if (nameMap.TryGetValue(p.Key, out var inputCol) && p.Value != inputCol)
                {
                    ch.Assert(baseInputs.Contains(inputCol));
                    string tempName = $"#Temp_{tempNum++}";
                    ch.Trace($"Input/output name collision: Renaming '{p.Key}' to '{tempName}'");
                    toCopy.Add((p.Key, tempName));
                    nameMap[tempName] = nameMap[p.Key];
                    ch.Assert(!nameMap.ContainsKey(p.Key));
                }
                // If we already have a name for this output column, maybe it is used elsewhere. (This can happen when
                // the only thing done with an input is we rename it, or output it twice, or something like this.) In
                // this case it is most appropriate to delay renaming till after all other processing has been done in
                // that case. But otherwise we may as well just take the name.
                if (!nameMap.ContainsKey(p.Value))
                {
                    nameMap[p.Key] = p.Value;
                }
            }

            // If any renamings were necessary, create the CopyColumns estimator.
            if (toCopy.Count > 0)
            {
                estimator = new CopyColumnsEstimator(env, toCopy.ToArray());
            }

            // First clear the inputs from zero-dependencies yet to be resolved.
            foreach (var col in baseInputs)
            {
                ch.Assert(zeroDependencies.Contains(col));
                ch.Assert(col.ReconcilerObj == baseReconciler);

                zeroDependencies.Remove(col); // Make more efficient...
                if (!dependsOnKey.TryGetValue(col, out var depends))
                {
                    continue;
                }
                // If any of these base inputs do not have names because, for example, they do not directly appear
                // in the outputs and otherwise do not have names, assign them a name.
                if (!nameMap.ContainsKey(col))
                {
                    nameMap[col] = $"Temp_{tempNum++}";
                }

                foreach (var depender in depends)
                {
                    var dependencies = keyDependsOn[depender];
                    ch.Assert(dependencies.Contains(col));
                    dependencies.Remove(col);
                    if (dependencies.Count == 0)
                    {
                        zeroDependencies.Add(depender);
                    }
                }
                dependsOnKey.Remove(col);
            }

            // Call the reconciler to get the base reader estimator.
            var readerEstimator = baseReconciler.Reconcile(env, baseInputs, nameMap.AsOther(baseInputs));

            ch.AssertValueOrNull(readerEstimator);

            // Next we iteratively find those columns with zero dependencies, "create" them, and if anything depends on
            // these add them to the collection of zero dependencies, etc. etc.
            while (zeroDependencies.Count > 0)
            {
                // All columns with the same reconciler can be transformed together.

                // Note that the following policy of just taking the first group is not optimal. So for example, we
                // could have three columns, (a, b, c). If we had the output (a.X(), b.X() c.Y().X()), then maybe we'd
                // reconcile a.X() and b.X() together, then reconcile c.Y(), then reconcile c.Y().X() alone. Whereas, we
                // could have reconciled c.Y() first, then reconciled a.X(), b.X(), and c.Y().X() together.
                var group = zeroDependencies.GroupBy(p => p.ReconcilerObj).First();
                // Beyond that first group that *might* be a data reader reconciler, all subsequent operations will
                // be on where the data is already loaded and so accept data as an input, that is, they should produce
                // an estimator. If this is not the case something seriously wonky is going on, most probably that the
                // user tried to use a column from another source. If this is detected we can produce a sensible error
                // message to tell them not to do this.
                if (!(group.Key is EstimatorReconciler rec))
                {
                    throw ch.Except("Columns from multiple sources were detected. " +
                                    "Did the caller use a " + nameof(PipelineColumn) + " from another delegate?");
                }
                PipelineColumn[] cols = group.ToArray();
                // All dependencies should, by this time, have names.
                ch.Assert(cols.SelectMany(c => c.Dependencies).All(dep => nameMap.ContainsKey(dep)));
                foreach (var newCol in cols)
                {
                    if (!nameMap.ContainsKey(newCol))
                    {
                        nameMap[newCol] = $"#Temp_{tempNum++}";
                    }
                }

                var localInputNames  = nameMap.AsOther(cols.SelectMany(c => c.Dependencies ?? Enumerable.Empty <PipelineColumn>()));
                var localOutputNames = nameMap.AsOther(cols);
                var usedNames        = new HashSet <string>(nameMap.Keys1.Except(localOutputNames.Values));

                var localEstimator = rec.Reconcile(env, cols, localInputNames, localOutputNames, usedNames);
                readerEstimator = readerEstimator?.Append(localEstimator);
                estimator       = estimator?.Append(localEstimator) ?? localEstimator;

                foreach (var newCol in cols)
                {
                    zeroDependencies.Remove(newCol); // Make more efficient!!

                    // Finally, we find all columns that depend on this one. If this happened to be the last pending
                    // dependency, then we add it to the list.
                    if (dependsOnKey.TryGetValue(newCol, out var depends))
                    {
                        foreach (var depender in depends)
                        {
                            var dependencies = keyDependsOn[depender];
                            Contracts.Assert(dependencies.Contains(newCol));
                            dependencies.Remove(newCol);
                            if (dependencies.Count == 0)
                            {
                                zeroDependencies.Add(depender);
                            }
                        }
                        dependsOnKey.Remove(newCol);
                    }
                }
            }

            if (keyDependsOn.Any(p => p.Value.Count > 0))
            {
                // This might happen if the user does something incredibly strange, like, say, take some prior
                // lambda, assign a column to a local variable, then re-use it downstream in a different lambdas.
                // The user would have to go to some extraorindary effort to do that, but nonetheless we want to
                // fail with a semi-sensible error message.
                throw ch.Except("There were some leftover columns with unresolved dependencies. " +
                                "Did the caller use a " + nameof(PipelineColumn) + " from another delegate?");
            }

            // Now do the final renaming, if any is necessary.
            toCopy.Clear();
            foreach (var p in outPairs)
            {
                // TODO: Right now we just write stuff out. Once the copy-columns estimator is in place
                // we ought to do this for real.
                Contracts.Assert(nameMap.ContainsKey(p.Value));
                string currentName = nameMap[p.Value];
                if (currentName != p.Key)
                {
                    ch.Trace($"Will copy '{currentName}' to '{p.Key}'");
                    toCopy.Add((currentName, p.Key));
                }
            }

            // If any final renamings were necessary, insert the appropriate CopyColumns transform.
            if (toCopy.Count > 0)
            {
                var copyEstimator = new CopyColumnsEstimator(env, toCopy.ToArray());
                if (estimator == null)
                {
                    estimator = copyEstimator;
                }
                else
                {
                    estimator = estimator.Append(copyEstimator);
                }
            }

            ch.Trace($"Exiting {nameof(ReaderEstimatorAnalyzerHelper)}");

            return(readerEstimator);
        }