ContextForMemberLookup() public method

public ContextForMemberLookup ( ) : Microsoft.CSharp.RuntimeBinder.Semantics.Declaration
return Microsoft.CSharp.RuntimeBinder.Semantics.Declaration
Ejemplo n.º 1
0
        private bool TryVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, AggregateType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeSrc.isInterfaceType() || typeSrc.isDelegateType());

            typeDst = null;

            AggregateSymbol aggSym = typeSrc.GetOwningAggregate();
            AggregateType aggOpenType = aggSym.getThisType();

            if (!semanticChecker.CheckTypeAccess(aggOpenType, bindingContext.ContextForMemberLookup()))
            {
                // if the aggregate symbol itself is not accessible, then forget it, there is no
                // variance that will help us arrive at an accessible type.
                return false;
            }

            TypeArray typeArgs = typeSrc.GetTypeArgsThis();
            TypeArray typeParams = aggOpenType.GetTypeArgsThis();
            CType[] newTypeArgsTemp = new CType[typeArgs.size];

            for (int i = 0; i < typeArgs.size; i++)
            {
                if (semanticChecker.CheckTypeAccess(typeArgs.Item(i), bindingContext.ContextForMemberLookup()))
                {
                    // we have an accessible argument, this position is not a problem.
                    newTypeArgsTemp[i] = typeArgs.Item(i);
                    continue;
                }

                if (!typeArgs.Item(i).IsRefType() || !typeParams.Item(i).AsTypeParameterType().Covariant)
                {
                    // This guy is inaccessible, and we are not going to be able to vary him, so we need to fail.
                    return false;
                }

                CType intermediateTypeArg;
                if (GetBestAccessibleType(semanticChecker, bindingContext, typeArgs.Item(i), out intermediateTypeArg))
                {
                    // now we either have a value type (which must be accessible due to the above
                    // check, OR we have an inaccessible type (which must be a ref type). In either
                    // case, the recursion worked out and we are OK to vary this argument.
                    newTypeArgsTemp[i] = intermediateTypeArg;
                    continue;
                }
                else
                {
                    Debug.Assert(false, "GetBestAccessibleType unexpectedly failed on a type that was used as a type parameter");
                    return false;
                }
            }

            TypeArray newTypeArgs = semanticChecker.getBSymmgr().AllocParams(typeArgs.size, newTypeArgsTemp);
            CType intermediateType = this.GetAggregate(aggSym, typeSrc.outerType, newTypeArgs);

            // All type arguments were varied successfully, which means now we must be accessible. But we could
            // have violated constraints. Let's check that out.

            if (!TypeBind.CheckConstraints(semanticChecker, null/*ErrorHandling*/, intermediateType, CheckConstraintsFlags.NoErrors))
            {
                return false;
            }

            typeDst = intermediateType;
            Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
            return true;
        }
Ejemplo n.º 2
0
        private bool TryArrayVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, ArrayType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);

            typeDst = null;

            // We are here because we have an array type with an inaccessible element type. If possible,
            // we should create a new array type that has an accessible element type for which a
            // conversion exists.

            CType elementType = typeSrc.GetElementType();
            if (!elementType.IsRefType())
            {
                // Covariant array conversions exist for reference types only.
                return false;
            }

            CType intermediateType;
            if (GetBestAccessibleType(semanticChecker, bindingContext, elementType, out intermediateType))
            {
                typeDst = this.GetArray(intermediateType, typeSrc.rank);

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            return false;
        }
Ejemplo n.º 3
0
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
        // RUNTIME BINDER ONLY CHANGE
        // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

        internal bool GetBestAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, CType typeSrc, out CType typeDst)
        {
            // This method implements the "best accessible type" algorithm for determining the type
            // of untyped arguments in the runtime binder. It is also used in method type inference
            // to fix type arguments to types that are accessible.

            // The new type is returned in an out parameter. The result will be true (and the out param
            // non-null) only when the algorithm could find a suitable accessible type.

            Debug.Assert(semanticChecker != null);
            Debug.Assert(bindingContext != null);
            Debug.Assert(typeSrc != null);

            typeDst = null;

            if (semanticChecker.CheckTypeAccess(typeSrc, bindingContext.ContextForMemberLookup()))
            {
                // If we already have an accessible type, then use it. This is the terminal point of the recursion.
                typeDst = typeSrc;
                return true;
            }

            // These guys have no accessibility concerns.
            Debug.Assert(!typeSrc.IsVoidType() && !typeSrc.IsErrorType() && !typeSrc.IsTypeParameterType());

            if (typeSrc.IsParameterModifierType() || typeSrc.IsPointerType())
            {
                // We cannot vary these.
                return false;
            }

            CType intermediateType;
            if ((typeSrc.isInterfaceType() || typeSrc.isDelegateType()) && TryVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsAggregateType(), out intermediateType))
            {
                // If we have an interface or delegate type, then it can potentially be varied by its type arguments
                // to produce an accessible type, and if that's the case, then return that.
                // Example: IEnumerable<PrivateConcreteFoo> --> IEnumerable<PublicAbstractFoo>
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType() && TryArrayVarianceAdjustmentToGetAccessibleType(semanticChecker, bindingContext, typeSrc.AsArrayType(), out intermediateType))
            {
                // Similarly to the interface and delegate case, arrays are covariant in their element type and
                // so we can potentially produce an array type that is accessible.
                // Example: PrivateConcreteFoo[] --> PublicAbstractFoo[]
                typeDst = intermediateType;

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsNullableType())
            {
                // We have an inaccessible nullable type, which means that the best we can do is System.ValueType.
                typeDst = this.GetOptPredefAgg(PredefinedType.PT_VALUE).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            if (typeSrc.IsArrayType())
            {
                // We have an inaccessible array type for which we could not earlier find a better array type
                // with a covariant conversion, so the best we can do is System.Array.
                typeDst = this.GetReqPredefAgg(PredefinedType.PT_ARRAY).getThisType();

                Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
                return true;
            }

            Debug.Assert(typeSrc.IsAggregateType());

            if (typeSrc.IsAggregateType())
            {
                // We have an AggregateType, so recurse on its base class.
                AggregateType aggType = typeSrc.AsAggregateType();
                AggregateType baseType = aggType.GetBaseClass();

                if (baseType == null)
                {
                    // This happens with interfaces, for instance. But in that case, the
                    // conversion to object does exist, is an implicit reference conversion,
                    // and so we will use it.
                    baseType = this.GetReqPredefAgg(PredefinedType.PT_OBJECT).getThisType();
                }

                return GetBestAccessibleType(semanticChecker, bindingContext, baseType, out typeDst);
            }

            return false;
        }