Ejemplo n.º 1
0
        private static ExtremumSettings SetExtremumDefaults(ExtremumSettings settings)
        {
            ExtremumSettings result = new ExtremumSettings();

            result.EvaluationBudget  = (settings.EvaluationBudget < 0) ? 128 : settings.EvaluationBudget;
            result.RelativePrecision = (settings.RelativePrecision < 0.0) ? 0.0 : settings.RelativePrecision;
            result.AbsolutePrecision = (settings.AbsolutePrecision < 0.0) ? 0.0 : settings.AbsolutePrecision;
            result.Listener          = settings.Listener;
            return(result);
        }
Ejemplo n.º 2
0
 /// <summary>
 /// Maximizes a function in the vicinity of a given point, subject to the given evaluation settings.
 /// </summary>
 /// <param name="f">The function.</param>
 /// <param name="x">A point suspected to be near the maximum. The search begins at this point.</param>
 /// <param name="settings">The settings to use when searching for the maximum.</param>
 /// <returns>The maximum.</returns>
 /// <exception cref="ArgumentNullException"><paramref name="f"/> is null or <paramref name="settings"/> is null.</exception>
 /// <exception cref="NonconvergenceException">More than the maximum allowed number of function evaluations occurred without a maximum being determined to the prescribed precision.</exception>
 /// <remarks>
 /// <para>When you supply <paramref name="settings"/>, note that the supplied <see cref="EvaluationSettings.RelativePrecision"/> and <see cref="EvaluationSettings.AbsolutePrecision"/>
 /// values refer to argument (i.e. x) values, not function (i.e. f) values. Note also that, for typical functions, the best attainable relative precision is of the order of the
 /// square root of machine precision (about 10<sup>-7</sup>), i.e. half the number of digits in a <see cref="Double"/>. This is because to identify an extremum we need to resolve changes
 /// in the function value, and near an extremum  &#x3B4;f &#x223C; (&#x3B4;x)<sup>2</sup>, so changes in the function value &#x3B4;f &#x223C; &#x3B5; correspond to changes in the
 /// argument value &#x3B4;x &#x223C; &#x221A;&#x3B5;. If you supply zero values for both precision settings, the method will adaptively approximate the best attainable precision for
 /// the supplied function and locate the extremum to that resolution. This is our suggested practice unless you know that you require a less precise determination.</para>
 /// </remarks>
 public static Extremum FindMaximum(Func <double, double> f, double x, ExtremumSettings settings)
 {
     if (f == null)
     {
         throw new ArgumentNullException(nameof(f));
     }
     if (settings == null)
     {
         throw new ArgumentNullException(nameof(settings));
     }
     return(FindMinimum(new Functor(f, true), x, settings).Negate());
 }
Ejemplo n.º 3
0
 /// <summary>
 /// Minimizes a function on the given interval, subject to the given evaluation settings.
 /// </summary>
 /// <param name="f">The function.</param>
 /// <param name="r">The interval.</param>
 /// <param name="settings">The settings used when searching for the minimum.</param>
 /// <returns>The minimum.</returns>
 /// <exception cref="ArgumentNullException"><paramref name="f"/> is null or <paramref name="settings"/> is null.</exception>
 /// <exception cref="NonconvergenceException">More than the maximum allowed number of function evaluations occurred without a minimum being determined to the prescribed precision.</exception>
 /// <remarks>
 /// <para>When you supply <paramref name="settings"/>, note that the supplied <see cref="EvaluationSettings.RelativePrecision"/> and <see cref="EvaluationSettings.AbsolutePrecision"/>
 /// values refer to argument (i.e. x) values, not function (i.e. f) values. Note also that, for typical functions, the best attainable relative precision is of the order of the
 /// square root of machine precision (about 10<sup>-7</sup>), i.e. half the number of digits in a <see cref="Double"/>. This is because to identify an extremum we need to resolve changes
 /// in the function value, and near an extremum  &#x3B4;f &#x223C; (&#x3B4;x)<sup>2</sup>, so changes in the function value &#x3B4;f &#x223C; &#x3B5; correspond to changes in the
 /// argument value &#x3B4;x &#x223C; &#x221A;&#x3B5;. If you supply zero values for both precision settings, the method will adaptively approximate the best attainable precision for
 /// the supplied function and locate the extremum to that resolution. This is our suggested practice unless you know that you require a less precise determination.</para>
 /// </remarks>
 public static Extremum FindMinimum(Func <double, double> f, Interval r, ExtremumSettings settings)
 {
     if (f == null)
     {
         throw new ArgumentNullException(nameof(f));
     }
     if (settings == null)
     {
         throw new ArgumentNullException(nameof(settings));
     }
     return(FindMinimum(new Functor(f), r.LeftEndpoint, r.RightEndpoint, settings));
 }
Ejemplo n.º 4
0
        private static Extremum FindMinimum(
            Functor f,
            double a, double b,
            ExtremumSettings settings
            )
        {
            // evaluate three points within the bracket
            double u = (3.0 * a + b) / 4.0;
            double v = (a + b) / 2.0;
            double w = (a + 3.0 * b) / 4.0;

            double fu = f.Evaluate(u); double fv = f.Evaluate(v); double fw = f.Evaluate(w);

            Debug.WriteLine($"f({u})={fu}  f({v})={fv}  f({w})={fw}");

            // move in the bracket boundaries, if possible
            if (fv < fu)
            {
                a = u; if (fw < fv)
                {
                    a = v;
                }
            }
            if (fv < fw)
            {
                b = w; if (fu < fv)
                {
                    b = v;
                }
            }

            Debug.WriteLine($"[{a} {b}]");

            // sort u, v, w by fu, fv, fw values
            // these three comparisons are the most efficient three-item sort
            if (fv < fu)
            {
                Global.Swap(ref v, ref u); Global.Swap(ref fv, ref fu);
            }
            if (fw < fu)
            {
                Global.Swap(ref w, ref u); Global.Swap(ref fw, ref fu);
            }
            if (fw < fv)
            {
                Global.Swap(ref w, ref v); Global.Swap(ref fw, ref fv);
            }

            // pass to Brent's algorithm to shrink bracket
            return(FindMinimum(f, a, b, u, fu, v, fv, w, fw, settings));
        }
Ejemplo n.º 5
0
        private static Extremum FindMinimum(Functor f, double x, ExtremumSettings settings)
        {
            Debug.Assert(f != null);
            Debug.Assert(settings != null);

            settings = SetExtremumDefaults(settings);

            // To call the bracketing function, we need an initial value and an initial step.
            double fx = f.Evaluate(x);
            // Pick a relatively small initial value to try to avoid running into any nearly singularities.
            double d = (Math.Abs(x) + 1.0 / 32.0) / 32.0;

            return(FindMinimum(f, x, fx, d, settings));
        }
Ejemplo n.º 6
0
 internal Extremum(double x, double f, double f2, double a, double b, int count, ExtremumSettings settings) : base(count)
 {
     Debug.Assert(settings != null);
     this.x        = x;
     this.f        = f;
     this.f2       = f2;
     this.a        = a;
     this.b        = b;
     this.settings = settings;
 }
Ejemplo n.º 7
0
        // Brent's algorithm: use 3-point parabolic interpolation,
        // switching to golden section if interval does not shrink fast enough
        // see Richard Brent, "Algorithms for Minimization Without Derivatives"

        // The bracket is [a, b] and the three lowest points are (u,fu), (v,fv), (w, fw)
        // Note that a or b may be u, v, or w.

        private static Extremum FindMinimum(
            Functor f,
            double a, double b,
            double u, double fu, double v, double fv, double w, double fw,
            ExtremumSettings settings
            )
        {
            settings = SetExtremumDefaults(settings);

            double tol = 0.0;
            double fpp = Double.NaN;

            while (f.EvaluationCount < settings.EvaluationBudget)
            {
                Debug.WriteLine($"n={f.EvaluationCount} tol={tol}");
                Debug.WriteLine($"[{a}  f({u})={fu}  f({v})={fv}  f({w})={fw}  {b}]");

                // While a <= u <= b is guaranteed, a < v, w < b is not guaranteed, since the bracket can sometimes be made tight enough to exclude v or w.
                // For example, if u < v < w, then we can set b = v, placing w outside the bracket.

                Debug.Assert(a < b);
                Debug.Assert((a <= u) && (u <= b));
                Debug.Assert((fu <= fv) && (fv <= fw));

                if (settings.Listener != null)
                {
                    Extremum result = new Extremum(u, fu, fpp, a, b, f.EvaluationCount, settings);
                    settings.Listener(result);
                }

                // Expected final situation is a<tol><tol>u<tol><tol>b, leaving no point left to evaluate that is not within tol of an existing point.

                if ((b - a) <= 4.0 * tol)
                {
                    return(new Extremum(u, fu, fpp, a, b, f.EvaluationCount, settings));
                }

                ParabolicFit(u, fu, v, fv, w, fw, out double x, out fpp);
                Debug.WriteLine($"parabolic x={x} f''={fpp}");

                if (Double.IsNaN(fpp) || (fpp <= 0.0) || (x < a) || (x > b))
                {
                    // The parabolic fit didn't work out, so do a golden section reduction instead.

                    // To get the most reduction of the bracket, pick the larger of au and ub.
                    // For self-similarity, pick a point inside it that divides it into two segments in the golden section ratio,
                    // i.e. 0.3820 = \frac{1}{\phi + 1} and 0.6180 = \frac{\phi}{\phi+1}.
                    // Put the smaller segment closer to u, so that x is closer to u, the best minimum so far.

                    double au = u - a;
                    double ub = b - u;

                    if (au > ub)
                    {
                        x = u - au / (AdvancedMath.GoldenRatio + 1.0);
                    }
                    else
                    {
                        x = u + ub / (AdvancedMath.GoldenRatio + 1.0);
                    }

                    Debug.WriteLine($"golden section x={x}");
                }

                // Ensure we don't evaluate within tolerance of an existing point.
                if (Math.Abs(x - u) < tol)
                {
                    Debug.WriteLine($"shift from u (x={x})"); x = (x > u) ? u + tol : u - tol;
                }
                if ((x - a) < tol)
                {
                    Debug.WriteLine($"shift from a (x={x})"); x = a + tol;
                }
                if ((b - x) < tol)
                {
                    Debug.WriteLine($"shift from b (x={x})"); x = b - tol;
                }

                // Evaluate the function at the new point x.
                double fx = f.Evaluate(x);
                Debug.WriteLine($"f({x}) = {fx}");
                Debug.WriteLine($"delta={fu-fx}");

                // Update a, b and u, v, w based on new point x.

                if (fx < fu)
                {
                    // The new point is lower than all the others; this is success

                    // u now becomes a bracket point
                    if (u < x)
                    {
                        a = u;
                    }
                    else
                    {
                        b = u;
                    }

                    // x -> u -> v -> w
                    w = v; fw = fv;
                    v = u; fv = fu;
                    u = x; fu = fx;
                }
                else
                {
                    if (fx == fu)
                    {
                        Debug.WriteLine($"f({x}) = f({u}) = {fx}");
                    }

                    // x now becomes a bracket point
                    if (x < u)
                    {
                        a = x;
                    }
                    else
                    {
                        b = x;
                    }

                    if (fx < fv)
                    {
                        // The new point is higher than u, but still lower than v and w.
                        // This isn't what we expected, but we have lower points that before.

                        // x -> v -> w
                        w = v; fw = fv;
                        v = x; fv = fx;
                    }
                    else if (fx < fw)
                    {
                        // x -> w
                        w = x; fw = fx;
                    }
                    else
                    {
                        // The new point is higher than all our other points; this is the worst case.

                        // We might still want to replace w with x because
                        //   (i) otherwise a parabolic fit will reproduce the same x and
                        //   (ii) w is quite likely far outside the new bracket and not telling us much about the behavior near u
                        // But, tests with Rosenbrock function indicate this increases evaluation count, so hold off on this idea for now.
                        // w = x; fw = fx;

                        Debug.WriteLine("bad point");
                    }
                }

                if ((settings.RelativePrecision > 0.0 || settings.AbsolutePrecision > 0.0))
                {
                    // If the user has specified a tolerance, use it.
                    tol = Math.Max(Math.Abs(u) * settings.RelativePrecision, settings.AbsolutePrecision);
                }
                else
                {
                    // Otherwise, try to get the tolerance from the curvature.
                    if (fpp > 0.0)
                    {
                        tol = Math.Sqrt(2.0 * Global.Accuracy * (Math.Abs(fu) + Global.Accuracy) / fpp);
                    }
                    else
                    {
                        // But if we don't have a useable curvature either, just wing it.
                        if (tol == 0.0)
                        {
                            tol = Math.Sqrt(Global.Accuracy);
                        }
                    }
                }
            }

            throw new NonconvergenceException();
        }
Ejemplo n.º 8
0
        private static Extremum FindMinimum(Functor f, double x, double fx, double d, ExtremumSettings settings)
        {
            // This function brackets a minimum by starting from x and taking increasing steps downhill until it moves uphill again.

            // We write this function assuming f(x) has already been evaluated because when it is called
            // to do a line fit for Powell's multi-dimensional minimization routine, that is the case and
            // we don't want to do a superfluous evaluation.

            Debug.Assert(f != null);
            Debug.Assert(d > 0.0);
            Debug.Assert(settings != null);

            // evaluate at x + d
            double y  = x + d;
            double fy = f.Evaluate(y);

            // if we stepped uphill, reverse direction of steps and exchange x & y
            if (fy > fx)
            {
                Global.Swap(ref x, ref y); Global.Swap(ref fx, ref fy);
                d = -d;
            }

            // we now know f(x) >= f(y) and we are stepping downhill
            // continue stepping until we step uphill
            double z, fz;

            while (true)
            {
                if (f.EvaluationCount >= settings.EvaluationBudget)
                {
                    throw new NonconvergenceException();
                }

                z  = y + d;
                fz = f.Evaluate(z);

                Debug.WriteLine($"f({x})={fx} f({y})={fy} f({z})={fz} d={d}");

                if (fz > fy)
                {
                    break;
                }

                // increase the step size each time
                d = AdvancedMath.GoldenRatio * d;

                // x <- y <- z
                x = y; fx = fy; y = z; fy = fz;
            }

            // we x and z now bracket a local minimum, with y the lowest point evaluated so far
            double a = Math.Min(x, z); double b = Math.Max(x, z);

            if (fz < fx)
            {
                Global.Swap(ref x, ref z); Global.Swap(ref fx, ref fz);
            }

            return(FindMinimum(f, a, b, y, fy, x, fx, z, fz, settings));
        }