Ejemplo n.º 1
0
        static void Main(string[] args)
        {
            const int    usersCount = 470758, moviesCount = 4500;
            const double targetMin = 1, targetMax = 5;
            const int    VSize         = 5;
            const double learningRate  = 0.02;
            const double maxError      = 1.08;
            const int    maxIterations = 4;
            const int    batchCount    = 10000;

            List <Rate> rates = NetflixDataHelper.ReadDataSet(@"combined_data_1.txt");

            Console.WriteLine("Dataset read: " + rates.Count + " records");

            List <Chunk> chunks = NetflixDataHelper.GetChunks(rates, usersCount, moviesCount, batchCount);

            Console.WriteLine("Feature matrix created");

            Vector <double> rmseChunks = Vector <double> .Build.Dense(chunks.Count);

            for (int k = 0; k < chunks.Count; k++)
            {
                FactorizationMachine fm =
                    new FactorizationMachine(chunks[0].X.ColumnCount, VSize, targetMin, targetMax, 0.1);
                double kRMSE = fm.Learn(chunks, k, learningRate, maxIterations, maxError);
                rmseChunks[k] = kRMSE;
            }
            var rmseMean   = rmseChunks.Mean();
            var rmseStdDev = rmseChunks.StandardDeviation();

            Console.WriteLine("RMSE mean: " + rmseMean + "+-" + rmseStdDev);
            Console.ReadKey();
        }
Ejemplo n.º 2
0
        public double Learn(List <Chunk> trainData, int skipIndex, double learningRate, int itCount, double err = 1.08)
        {
            double rmse = 5;

            for (int it = 0; it < itCount; it++)
            {
                int startTime = Environment.TickCount;
                NetflixDataHelper.Shuffle(ref trainData);
                for (int k = 0; k < trainData.Count; k++)
                {
                    if (k == skipIndex)
                    {
                        continue;
                    }
                    Chunk chunk = trainData[k];
                    int   n     = chunk.X.RowCount;
                    while (n > 1)
                    {
                        n--;
                        int m = rnd.Next(n + 1);
                        this.GradDescent(chunk.X.Row(m), chunk.Y[m], learningRate);
                    }
                }
                Vector <double> testEval = this.Predict(trainData[skipIndex].X);
                Vector <double> e        = testEval - trainData[skipIndex].Y;
                rmse = Math.Sqrt(e.PointwisePower(2).Sum() / e.Count);
                var time = (Environment.TickCount - startTime) / 1000.0;
                Console.WriteLine($"Test batch - {skipIndex}, iteration - {it}, rmse: {rmse}, time: {time}");
                if (rmse < err)
                {
                    break;
                }
            }
            return(rmse);
        }