Ejemplo n.º 1
0
        public void Testing(int outClass, Dictionary <string, double[]> keyValuePairs, MNIST mnist /* Mnist */)
        {
            Console.WriteLine("Starting Test...");

            var recognition = 0;

            for (int i = 0; i < /*keyValuePairs.Count*/ mnist.TestImgs.Count; i++)
            {
                Console.WriteLine("\t Processing testdata {0} of {1}", i + 1, /*keyValuePairs.Count*/ mnist.TestImgs.Count);

                double[] output = this.ForwardPass(outClass, /*keyValuePairs.ElementAt(i).Key*/ null, mnist.TestImgs[i].Pixels);

                // recognition rate computation
                recognition += RecognitionRate(output, /*keyValuePairs.ElementAt(i).Value*/ mnist.TestImgs[i].Label);

                //if (RecognitionRate(output, keyValuePairs.ElementAt(i).Value) == 0)
                //{
                //    Console.WriteLine("\t\t Testdata {0} wrong classified", keyValuePairs.ElementAt(i).Key);
                //}
            }

            var recRate = (double)recognition / (double)/*keyValuePairs.Count*/ mnist.TestImgs.Count;

            Console.WriteLine("Recognition rate in testdata: {0}", recRate);
        }
Ejemplo n.º 2
0
        public void Learning(Dictionary <string, double[]> keyValuePairs, int outClass, int epochs, int miniBatchSize, string filePath, MNIST mnist /* Mnist */)
        {
            TextWriter textWriter = new StreamWriter(filePath + "learning_report.csv");

            for (int e = 0; e < epochs; e++)
            {
                Console.WriteLine("Processing epoch {0} of {1}", e + 1, epochs + 1);
                var recognition = 0;
                var recRate     = 0.0;

                // shuffle training input
                //var list = keyValuePairs.Keys.ToList();
                //var rnd = new Random();
                //var rndList = list.OrderBy(x => rnd.Next()).ToList();
                //Dictionary<string, double[]> rndKeyValuePairs = new Dictionary<string, double[]>();

                //foreach (var key in rndList)
                //{
                //    rndKeyValuePairs.Add(key, keyValuePairs[key]);
                //}

                // ------------------------ MNIST Dataset ------------------------
                mnist.ShuffleTrainingImgs();
                // ------------------------ MNIST Dataset ------------------------

                // training data
                for (int i = 0; i < /*rndKeyValuePairs.Count*/ mnist.TrainingImgs.Count; i++)
                {
                    double[] output = new double[outClass];
                    // forward pass
                    for (int j = 0; j < this.Layers.Count; j++)
                    {
                        if (this.Layers[j].GetType().Equals(typeof(InputLayer)))
                        {
                            this.Layers[j].FeedForward(/*new Bitmap(rndKeyValuePairs.ElementAt(i).Key)*/ null, null, /*null*/ mnist.TrainingImgs[i].Pixels); // MNIST
                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(ConvolutionLayer)))
                        {
                            if (e == 0 && i == 0)
                            {
                                this.Layers[j].RandInitFilter();
                            }

                            this.Layers[j].FeedForward(null, null, this.Layers[j - 1].ImgMatrix);
                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(PoolingLayer)))
                        {
                            this.Layers[j].FeedForward(null, null, this.Layers[j - 1].ImgMatrix);

                            if (this.Layers[j + 1].GetType().Equals(typeof(FullyConnectedLayer)))
                            {
                                this.Layers[j].Flattening();
                            }

                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(FullyConnectedLayer)))
                        {
                            if (this.Layers[j + 1].GetType().Equals(typeof(OutputLayer)))
                            {
                                this.Layers[j].InitLayer(this.Layers[j - 1].FlatArray.Length, outClass);
                            }
                            else
                            {
                                this.Layers[j].InitLayer(this.Layers[j - 1].FlatArray.Length, this.Layers[j - 1].FlatArray.Length);
                            }

                            if (e == 0 && i == 0)
                            {
                                this.Layers[j].RandInitLayerMat();
                            }

                            this.Layers[j].FeedForward(null, this.Layers[j - 1].FlatArray, null);
                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(OutputLayer)))
                        {
                            this.Layers[j].FeedForward(null, this.Layers[j - 1].FlatArray, null);
                            output = this.Layers[j].GetOutputArray();
                        }
                    }

                    // backward pass
                    for (int j = this.Layers.Count - 1; j >= 0; j--)
                    {
                        if (this.Layers[j].GetType().Equals(typeof(ConvolutionLayer)))
                        {
                            this.Layers[j].BackwardPass(null, this.Layers[j + 1].DeltaMatrix);
                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(PoolingLayer)))
                        {
                            if (this.Layers[j + 1].GetType().Equals(typeof(FullyConnectedLayer)))
                            {
                                this.Layers[j].BackwardPass(this.Layers[j + 1].DeltaArray, null);
                            }
                            else
                            {
                                this.Layers[j].BackwardPass(null, this.Layers[j + 1].DeltaMatrix);
                            }

                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(FullyConnectedLayer)))
                        {
                            this.Layers[j].BackwardPass(this.Layers[j + 1].DeltaArray, null);
                            continue;
                        }

                        if (this.Layers[j].GetType().Equals(typeof(OutputLayer)))
                        {
                            this.Layers[j].BackwardPass(/*rndKeyValuePairs.ElementAt(i).Value*/ mnist.TrainingImgs[i].Label, null); // MNIST
                        }
                    }

                    // update for every mini Batch
                    if (i % miniBatchSize == miniBatchSize - 1)
                    {
                        // update forward pass
                        for (int j = 0; j < this.Layers.Count; j++)
                        {
                            if (this.Layers[j].GetType().Equals(typeof(ConvolutionLayer)) ||
                                this.Layers[j].GetType().Equals(typeof(FullyConnectedLayer)))
                            {
                                this.Layers[j].UpdateWeights(miniBatchSize);
                            }
                        }
                        //Console.WriteLine("\t" + "Weights updated after {0} inputs", i + 1);
                    }

                    // recognition rate computation
                    recognition += RecognitionRate(output, /*rndKeyValuePairs.ElementAt(i).Value*/ mnist.TrainingImgs[i].Label); // MNIST
                }

                recRate = (double)recognition / (double)/*rndKeyValuePairs.Count*/ mnist.TrainingImgs.Count; // MNIST
                Console.WriteLine("Recognition rate in epoch {0}: {1}", e + 1, recRate);

                // save recognition rate to csv after each epoch
                textWriter.WriteLine(recRate);
                textWriter.Flush();

                // store weights
                for (int j = 0; j < this.Layers.Count; j++)
                {
                    if (this.Layers[j].GetType().Equals(typeof(ConvolutionLayer)) ||
                        this.Layers[j].GetType().Equals(typeof(FullyConnectedLayer)))
                    {
                        // store weights
                        this.Layers[j].StoreWeights();
                    }
                }

                if (recRate == 1)
                {
                    Console.WriteLine("Learning stopped in epoch {0} of {1}", e + 1, epochs);
                    break;
                }
            }
        }
        public static void Main(string[] args)
        {
            NeuralNetwork network       = new NeuralNetwork(ExecMode.Learning, 1 * Math.Pow(10, -6));
            string        imageFilePath = @"C:\Users\cleist\source\repos\LicensPlateRecognition\LicensPlateRecognition\LicensPlateRecognition\Image\";

            string[] trainingData = Directory.GetFiles(imageFilePath + "TrainingData", "*");
            string[] testData     = Directory.GetFiles(imageFilePath + "TestData", "*");
            // key value pairs for training or test input and desired output
            Dictionary <string, double[]> keyValuePairs = new Dictionary <string, double[]>();

            // Declare network layers: declare in order of traversion! Since it will be the order of the layers list in network class
            InputLayer       inputLayer = new InputLayer(28, 28, 1, network);
            ConvolutionLayer convLayer1 = new ConvolutionLayer(new Filter(5, 5, inputLayer.Depth), 20, 1, network);
            //ConvolutionLayer convLayer2 = new ConvolutionLayer(new Filter(5, 5, convLayer1.Filters.Count), 20, 1, network);
            PoolingLayer     pooling1   = new PoolingLayer(network);
            ConvolutionLayer convLayer3 = new ConvolutionLayer(new Filter(5, 5, convLayer1.Filters.Count), 40, 1, network);
            //ConvolutionLayer convLayer4 = new ConvolutionLayer(new Filter(3, 3, convLayer3.Filters.Count), 40, 1, network);
            PoolingLayer        pooling2             = new PoolingLayer(network);
            FullyConnectedLayer fullyConnectedLayer1 = new FullyConnectedLayer(network);
            //FullyConnectedLayer fullyConnectedLayer2 = new FullyConnectedLayer(network);
            OutputLayer outputLayer = new OutputLayer(network);
            // Declare Output Classes
            int outClass = 10;

            // ------------------------ MNIST Dataset ------------------------
            MNIST mnist = new MNIST();

            // ------------------------ MNIST Dataset ------------------------

            if (network.ExecMode == ExecMode.Learning)
            {
                // create a csv with tuple of image and class value
                //network.CreateCSV(imageFilePath, trainingData, "training.csv");

                //network.LoadCSV(imageFilePath, keyValuePairs, "training.csv", outClass);

                // ------------------------ MNIST Dataset ------------------------
                mnist.ReadTrainMNIST();
                // ------------------------ MNIST Dataset ------------------------

                var epochs = 59;
                // must be divisible through number of training data
                var miniBatchSize = 10;

                network.Learning(keyValuePairs, outClass, epochs, miniBatchSize, imageFilePath, mnist /* Mnist */);

                Console.WriteLine("Press any key to continue...");
                Console.ReadKey();
            }

            if (network.ExecMode == ExecMode.Testing)
            {
                // create a csv with tuple of image and class value
                //network.CreateCSV(imageFilePath, testData, "testing.csv");

                //network.LoadCSV(imageFilePath, keyValuePairs, "testing.csv", outClass);

                // ------------------------ MNIST Dataset ------------------------
                mnist.ReadTestMNIST();
                // ------------------------ MNIST Dataset ------------------------

                network.Testing(outClass, keyValuePairs, mnist /* Mnist */);

                Console.WriteLine("Press any key to continue...");
                Console.ReadKey();
            }

            if (network.ExecMode == ExecMode.Normal)
            {
                while (true)
                {
                    Console.WriteLine("Please Insert an image filepath...");
                    try
                    {
                        string   image  = Console.ReadLine();
                        double[] output = network.ForwardPass(outClass, image, null);
                        for (int i = 0; i < output.Length; i++)
                        {
                            Console.Write("{0} ", output[i]);
                        }
                        Console.WriteLine();
                    }
                    catch
                    {
                        Console.WriteLine("No image or supported image format!");
                    }
                }
            }
        }