Ejemplo n.º 1
0
 /*
  *  Description:
  *      Read the license plate
  *  Input:
  *      //Rectified license plate image containing six characters
  *      Int32Image labeledRectifiedPlateImage
  *  Output:
  *      //Result by the blob matcher
  *      ref LicensePlate result
  *  Return:
  *      //six characters found
  *      bool
  */
 public static bool MatchPlate(Int32Image binaryCharacterImage, ref LicensePlate result)
 {
     try
     {
         VisionLab.SetInt32Image(cmdInt, "binaryCharacterImage", binaryCharacterImage);
         String plateStr = StripTime(cmdInt.ExecRequest("icall MatchPlate binaryCharacterImage"));
         if (plateStr.Substring(0, 5) != "false")
         {
             string[] plateResult      = plateStr.Split(' ');
             string   plateResultChars = plateResult[0];
             result.confidence = double.Parse(plateResult[1], CultureInfo.InvariantCulture);
             for (int c = 0; c < 6; c++)
             {
                 result.characters.Add(new LicenseCharacter(plateResultChars[c].ToString(), double.Parse(plateResult[2 + c], CultureInfo.InvariantCulture), result.confidence));
             }
             bool[] types = new bool[6];
             for (int i = 0; i < 6; i++)
             {
                 types[i] = '0' <= result.characters[i].character[0] && result.characters[i].character[0] <= '9';
             }
             if (types[0] && types[1] && !types[2] && !types[3] && !types[4] && !types[5])
             {
                 return(true);
             }
             if (!types[0] && !types[1] && types[2] && types[3] && !types[4] && !types[5])
             {
                 return(true);
             }
             if (!types[0] && !types[1] && !types[2] && !types[3] && types[4] && types[5])
             {
                 return(true);
             }
             if (types[0] && !types[1] && !types[2] && !types[3] && types[4] && types[5])
             {
                 return(true);
             }
             if (types[0] && types[1] && !types[2] && !types[3] && !types[4] && types[5])
             {
                 return(true);
             }
             return(false);
         }
         else
         {
             return(false);
         }
     }
     catch (System.Exception ex)
     {
         throw new Exception("MatchPlate: " + ex.Message);
     }
 }
Ejemplo n.º 2
0
        private void MatchImage(String Filename, bool add)
        {
            ErrorTB.Text     = "";
            lblExpected.Text = Filename.Substring(0, 6);

            //*************************************//
            //** load and display original image **//
            //*************************************//
            Bitmap bm;

            bm = new Bitmap(Filename);
            RGB888Image plateImage = VisionLabEx.BitmapToJL(bm);

            VisionLabEx.DisplayImage(plateImage, imgOrig);

            //****************//
            //** Find plate **//
            //****************//
            Int32Image binaryPlateImage = new Int32Image();

            if (!LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage))
            {
                VisionLabEx.DisplayImage(binaryPlateImage, imgPlateBin, true, true);
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstFindPlateErr.Items.Add(Filename);
                    lblFindPlateErrCount.Text = lstFindPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }
            VisionLabEx.DisplayImage(binaryPlateImage, imgPlateBin, true, true);
            //**
            //** Enable this to display blob measurements to debug output
            //**
            DisplayBlobs(binaryPlateImage);

            //*******************//
            //** Rectify plate **//
            //*******************//
            Int32Image binaryCharacterImage = new Int32Image();

            if (!LicensePlateMatcher.FindCharacters(plateImage, binaryPlateImage, ref binaryCharacterImage))
            {
                if (imgRectifiedPlate.Image != null)
                {
                    imgRectifiedPlate.Image.Dispose();
                }
                imgRectifiedPlate.Image = null;
                lblLexiconResult.Text   = "";
                if (add)
                {
                    lstRectifyPlateErr.Items.Add(Filename);
                    lblRectfyPlateErrCount.Text = lstRectifyPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }
            VisionLabEx.DisplayImage(binaryCharacterImage, imgRectifiedPlate, true, true);
            //**
            //** Enable this to display blob measurements to debug output
            //**
            DisplayBlobs(binaryCharacterImage);

            //*****************//
            //** Match Plate **//
            //*****************//
            LicensePlate result        = new LicensePlate();
            LicensePlate lexiconResult = new LicensePlate();

            if (!LicensePlateMatcher.MatchPlate(binaryCharacterImage, blobMatcher, lexicon, ref result, ref lexiconResult))
            {
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstMatchPlateErr.Items.Add(Filename);
                    lblMatchPlateErrCount.Text = lstMatchPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }

            //*********************//
            //** Process results **//
            //*********************//
            ProcessResults(result, lexiconResult, Filename, (double)nupConfidence.Value / 100, add);

            bm.Dispose();
            plateImage.Dispose();
            binaryPlateImage.Dispose();
            binaryCharacterImage.Dispose();

            //Force a garbage collect to prevens malloc errors from unmanaged code.
            GC.Collect();
        }
Ejemplo n.º 3
0
        public void ProcessResults(LicensePlate result, LicensePlate lexiconResult, string filename, double minConfidence, bool add)
        {
            string expected = filename.Substring(0, 6);

            lblExpected.Text   = expected;
            lblResult.Text     = result.getLicensePlateString();
            lblConfidence.Text = Math.Round(result.confidence, 3).ToString();
            if (lexiconResult != null)
            {
                lblLexiconResult.Text     = lexiconResult.getLicensePlateString();
                lblLexiconConfidence.Text = Math.Round(lexiconResult.confidence, 3).ToString();
            }
            else
            {
                lblLexiconResult.Text = "";
            }

            lblError1.Text = Math.Round(result.characters[0].error, 2).ToString();
            lblError2.Text = Math.Round(result.characters[1].error, 2).ToString();
            lblError3.Text = Math.Round(result.characters[2].error, 2).ToString();
            lblError4.Text = Math.Round(result.characters[3].error, 2).ToString();
            lblError5.Text = Math.Round(result.characters[4].error, 2).ToString();
            lblError6.Text = Math.Round(result.characters[5].error, 2).ToString();
            if (!chkUseLexicon.Checked)
            {
                lblLexiconResult.ForeColor = Color.Black;
                if (result.confidence >= minConfidence && expected == result.getLicensePlateString())       //True Positive (Matched)
                {
                    lblResult.ForeColor = Color.Green;
                    if (add)
                    {
                        lstMatched.Items.Add(filename);
                        lblMatchedCount.Text = lstMatched.Items.Count.ToString();
                    }
                }
                if (result.confidence >= minConfidence && expected != result.getLicensePlateString())       //False Positive (Error)
                {
                    lblResult.ForeColor = Color.Red;
                    if (add)
                    {
                        lstErrors.Items.Add(filename);
                        lblErrorsCount.Text = lstErrors.Items.Count.ToString();
                    }
                }
                if ((result.confidence < minConfidence && expected == result.getLicensePlateString()) ||    //False Negative (Low confidence)
                    (result.confidence < minConfidence && expected != result.getLicensePlateString()))      //True Negative (Low confidence)
                {
                    lblResult.ForeColor = Color.Blue;
                    if (add)
                    {
                        lstLowConfidence.Items.Add(filename);
                        lblLowConfidenceCount.Text = lstLowConfidence.Items.Count.ToString();
                    }
                }
            }
            else
            {
                lblResult.ForeColor = Color.Black;
                if (lexiconResult.confidence >= minConfidence && expected == lexiconResult.getLicensePlateString())       //True Positive (Matched)
                {
                    lblLexiconResult.ForeColor = Color.Green;
                    if (add)
                    {
                        if (lexiconResult.getLicensePlateString() != result.getLicensePlateString())
                        {
                            lstLexicon.Items.Add(filename);
                            lblLexiconCount.Text = lstMatched.Items.Count.ToString();
                        }
                        else
                        {
                            lstMatched.Items.Add(filename);
                            lblMatchedCount.Text = lstMatched.Items.Count.ToString();
                        }
                    }
                }
                if (lexiconResult.confidence >= minConfidence && expected != lexiconResult.getLicensePlateString())       //False Positive (Error)
                {
                    lblLexiconResult.ForeColor = Color.Red;
                    if (add)
                    {
                        lstErrors.Items.Add(filename);
                        lblErrorsCount.Text = lstErrors.Items.Count.ToString();
                    }
                }
                if ((lexiconResult.confidence < minConfidence && expected == lexiconResult.getLicensePlateString()) ||    //False Negative (Low confidence)
                    (lexiconResult.confidence < minConfidence && expected != lexiconResult.getLicensePlateString()))      //True Negative (Low confidence)
                {
                    lblLexiconResult.ForeColor = Color.Blue;
                    if (add)
                    {
                        lstLowConfidence.Items.Add(filename);
                        lblLowConfidenceCount.Text = lstLowConfidence.Items.Count.ToString();
                    }
                }
            }
        }
Ejemplo n.º 4
0
 public void ProcessResults(LicensePlate result, string filename, double minConfidence, bool add)
 {
     ProcessResults(result, null, filename, minConfidence, add);
 }
Ejemplo n.º 5
0
        public void ProcessResults(LicensePlate result, LicensePlate lexiconResult, string filename, double minConfidence, bool add)
        {
            string expected = filename.Substring(0, 6);
            lblExpected.Text = expected;
            lblResult.Text = result.getLicensePlateString();
            lblConfidence.Text = Math.Round(result.confidence, 3).ToString();
            if (lexiconResult != null)
            {                
                lblLexiconResult.Text = lexiconResult.getLicensePlateString();
                lblLexiconConfidence.Text = Math.Round(lexiconResult.confidence, 3).ToString();
            } else {
                lblLexiconResult.Text = "";
            }

            lblError1.Text = Math.Round(result.characters[0].error, 2).ToString();
            lblError2.Text = Math.Round(result.characters[1].error, 2).ToString();
            lblError3.Text = Math.Round(result.characters[2].error, 2).ToString();
            lblError4.Text = Math.Round(result.characters[3].error, 2).ToString();
            lblError5.Text = Math.Round(result.characters[4].error, 2).ToString();
            lblError6.Text = Math.Round(result.characters[5].error, 2).ToString();
            if (!chkUseLexicon.Checked)
            {
                lblLexiconResult.ForeColor = Color.Black;
                if (result.confidence >= minConfidence && expected == result.getLicensePlateString())       //True Positive (Matched)
                {
                    lblResult.ForeColor = Color.Green;
                    if (add)
                    {
                        lstMatched.Items.Add(filename);
                        lblMatchedCount.Text = lstMatched.Items.Count.ToString();
                    }
                }
                if (result.confidence >= minConfidence && expected != result.getLicensePlateString())       //False Positive (Error)
                {
                    lblResult.ForeColor = Color.Red;
                    if (add)
                    {
                        lstErrors.Items.Add(filename);
                        lblErrorsCount.Text = lstErrors.Items.Count.ToString();
                    }
                }
                if ((result.confidence < minConfidence && expected == result.getLicensePlateString()) ||    //False Negative (Low confidence)
                    (result.confidence < minConfidence && expected != result.getLicensePlateString()))      //True Negative (Low confidence)
                {
                    lblResult.ForeColor = Color.Blue;
                    if (add)
                    {                     
                        lstLowConfidence.Items.Add(filename);
                        lblLowConfidenceCount.Text = lstLowConfidence.Items.Count.ToString();
                    }
                }
            }
            else
            {
                lblResult.ForeColor = Color.Black;
                if (lexiconResult.confidence >= minConfidence && expected == lexiconResult.getLicensePlateString())       //True Positive (Matched)
                {
                    lblLexiconResult.ForeColor = Color.Green;
                    if (add)
                    {
                        if (lexiconResult.getLicensePlateString() != result.getLicensePlateString())
                        {
                            lstLexicon.Items.Add(filename);
                            lblLexiconCount.Text = lstMatched.Items.Count.ToString();
                        }
                        else
                        {
                            lstMatched.Items.Add(filename);
                            lblMatchedCount.Text = lstMatched.Items.Count.ToString();
                        }
                    }
                }
                if (lexiconResult.confidence >= minConfidence && expected != lexiconResult.getLicensePlateString())       //False Positive (Error)
                {
                    lblLexiconResult.ForeColor = Color.Red;
                    if (add)
                    {
                        lstErrors.Items.Add(filename);
                        lblErrorsCount.Text = lstErrors.Items.Count.ToString();
                    }
                }
                if ((lexiconResult.confidence < minConfidence && expected == lexiconResult.getLicensePlateString()) ||    //False Negative (Low confidence)
                    (lexiconResult.confidence < minConfidence && expected != lexiconResult.getLicensePlateString()))      //True Negative (Low confidence)
                {
                    lblLexiconResult.ForeColor = Color.Blue;
                    if (add)
                    {
                        lstLowConfidence.Items.Add(filename);
                        lblLowConfidenceCount.Text = lstLowConfidence.Items.Count.ToString();
                    }
                }
            }
        }
Ejemplo n.º 6
0
 public void ProcessResults(LicensePlate result, string filename, double minConfidence, bool add) { ProcessResults(result, null, filename, minConfidence, add); }
Ejemplo n.º 7
0
        private void MatchImage(String Filename, bool add)
        {
            ErrorTB.Text = "";
            lblExpected.Text = Filename.Substring(0, 6);

            //*************************************//
            //** load and display original image **//
            //*************************************//
            Bitmap bm;
            bm = new Bitmap(Filename);
            RGB888Image plateImage = VisionLabEx.BitmapToJL(bm);
            DisplayImage(plateImage, imgOrig);            

            //****************//
            //** Find plate **//
            //****************//
            Int16Image binaryPlateImage = new Int16Image();

            if (!LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage, TresholdConditions.NORMAAL) 
                && !LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage, TresholdConditions.OVERBELICHT)
                && !LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage, TresholdConditions.ONDERBELICHT))
            {
                DisplayImage(binaryPlateImage, imgPlateBin, true, true);
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstFindPlateErr.Items.Add(Filename);
                    lblFindPlateErrCount.Text = lstFindPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }           
            DisplayImage(binaryPlateImage, imgPlateBin, true, true);
            
            //*******************//
            //** Rectify plate **//
            //*******************//                       
            Int16Image binaryRectifiedImage = new Int16Image();

            do
            {
                // Check if we can find the plate
                if (LicensePlateMatcher.FindCharacters(plateImage, binaryPlateImage, ref binaryRectifiedImage))
                {
                    // if so we are done
                    break;
                }
                else
                {
                    // ************************************
                    // **  Find the biggest blob in the  **
                    // **  image and remove that one     **
                    // ************************************
                    VisionLab.LabelBlobs(binaryPlateImage, Connected.EightConnected);
                    vector_BlobAnalyse ba_vec = new vector_BlobAnalyse();
                    ba_vec.Add(BlobAnalyse.BA_Area);
                    vector_Blob blobs = new vector_Blob();
                    VisionLab.BlobAnalysis(binaryPlateImage, VisionLab.VectorToSet_BlobAnalyse(ba_vec), VisionLab.MaxPixel(binaryPlateImage), blobs);
                    int biggestArea = 0;
                    foreach (Blob ba in blobs)
                    {
                        if (ba.Area() > biggestArea)
                        {
                            biggestArea = ba.Area();
                        }
                    }
                    VisionLab.RemoveBlobs(binaryPlateImage, Connected.EightConnected, BlobAnalyse.BA_Area, biggestArea - 1, biggestArea + 1);
                }
            } // Repeat this until there is nothing left
            while (VisionLab.SumIntPixels(binaryPlateImage) > 0);

            // If that is so it wasn't found
            if (VisionLab.SumIntPixels(binaryPlateImage) == 0)
            {
                // So do all this
                if (imgRectifiedPlate.Image != null)
                    imgRectifiedPlate.Image.Dispose();
                imgRectifiedPlate.Image = null;
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstRectifyPlateErr.Items.Add(Filename);
                    lblRectfyPlateErrCount.Text = lstRectifyPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }

            DisplayImage(binaryRectifiedImage, imgRectifiedPlate, true, true);
            

            //*****************//
            //** Match Plate **//
            //*****************//
            LicensePlate result = new LicensePlate();
            LicensePlate lexiconResult = new LicensePlate();
            if (!LicensePlateMatcher.MatchPlate(binaryRectifiedImage, blobMatcher, lexicon, ref result, ref lexiconResult, false))
            {
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstMatchPlateErr.Items.Add(Filename);
                    lblMatchPlateErrCount.Text = lstMatchPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }            
            // Extra way to up confidence perhaps
            if(result.characters != null && result.confidence < (double)nupConfidence.Value / 100)
            {
                LicensePlateMatcher.MatchPlate(binaryRectifiedImage, blobMatcher, lexicon, ref result, ref lexiconResult, true);
            }

            //*********************//
            //** Process results **//
            //*********************//            
            ProcessResults(result, lexiconResult, Filename, (double) nupConfidence.Value / 100, add);
            
            bm.Dispose();
            plateImage.Dispose();
            binaryPlateImage.Dispose();
            binaryRectifiedImage.Dispose();

            //Force a garbage collect to prevens malloc errors from unmanaged code.
            GC.Collect();
        }
        /*
         *  Description:
         *      Read the license plate
         *  Input:
         *      //Rectified license plate image containing six characters
         *      Int32Image labeledRectifiedPlateImage
         *  Output:
         *      //Result by the blob matcher
         *      ref LicensePlate result
         *  Return:
         *      //six characters found
         *      bool
         */
        public static bool MatchPlate(Int32Image binaryCharacterImage, BlobMatcher_Int32 matcher, ClassLexicon lexicon, ref LicensePlate result, ref LicensePlate lexiconResult)
        {
            try
            {
                //Check if 6 characters/blobs have been found and label image.
                if (VisionLab.LabelBlobs(binaryCharacterImage, Connected.EightConnected) != 6)
                {
                    return(false);
                }

                //Calculate dimensions and locations of all characters/blobs.
                vector_BlobAnalyse ba_vec = new vector_BlobAnalyse();
                ba_vec.Add(BlobAnalyse.BA_TopLeft);
                ba_vec.Add(BlobAnalyse.BA_Height);
                ba_vec.Add(BlobAnalyse.BA_Width);
                vector_Blob returnBlobs = new vector_Blob();
                VisionLab.BlobAnalysis(binaryCharacterImage, VisionLab.VectorToSet_BlobAnalyse(ba_vec), VisionLab.MaxPixel(binaryCharacterImage), returnBlobs, SortOrder.SortDown, BlobAnalyse.BA_TopLeft, UseXOrY.UseX);
                ba_vec.Dispose();
                Int32Image binaryCharacter = new Int32Image();

                //Create data structure for lexicon.
                vector_vector_LetterMatch match = new vector_vector_LetterMatch();

                //Process each character/blob.
                foreach (Blob b in returnBlobs)
                {
                    //Cut out character
                    VisionLab.ROI(binaryCharacterImage, binaryCharacter, b.TopLeft(), new HeightWidth(b.Height(), b.Width()));
                    //Convert ROI result to binary
                    VisionLab.ClipPixelValue(binaryCharacter, 0, 1);

                    //Calculate character's classification for all classes.
                    vector_PatternMatchResult returnMatches = new vector_PatternMatchResult();
                    float  conf = matcher.AllMatches(binaryCharacter, (float)-0.5, (float)0.5, returnMatches);
                    float  err  = returnMatches[0].error;
                    int    id   = returnMatches[0].id;
                    string chr  = matcher.PatternName(id);

                    //Fill datastructure for lexicon.
                    match.Add(VisionLabEx.PatternMatchResultToLetterMatch(returnMatches));

                    //Store best match in result
                    result.characters.Add(new LicenseCharacter(chr, err, conf));
                }

                //Validate match with lexicon.
                vector_int bestWord = new vector_int();
                lexiconResult.confidence = lexicon.FindBestWord(match, bestWord, Optimize.OptimizeForMinimum);
                for (int i = 0; i < bestWord.Count; i++)
                {
                    string character = matcher.PatternName(bestWord[i]);
                    //Store lexicon result
                    lexiconResult.characters.Add(new LicenseCharacter(character));
                }

                binaryCharacter.Dispose();
                returnBlobs.Dispose();
                match.Dispose();
                bestWord.Dispose();

                bool[] types = new bool[6];
                for (int i = 0; i < 6; i++)
                {
                    types[i] = '0' <= result.characters[i].character[0] && result.characters[i].character[0] <= '9';
                }
                if (types[0] && types[1] && !types[2] && !types[3] && !types[4] && !types[5])
                {
                    return(true);
                }
                if (!types[0] && !types[1] && types[2] && types[3] && !types[4] && !types[5])
                {
                    return(true);
                }
                if (!types[0] && !types[1] && !types[2] && !types[3] && types[4] && types[5])
                {
                    return(true);
                }
                if (types[0] && !types[1] && !types[2] && !types[3] && types[4] && types[5])
                {
                    return(true);
                }
                if (types[0] && types[1] && !types[2] && !types[3] && !types[4] && types[5])
                {
                    return(true);
                }
                return(false);
            }
            catch (System.Exception ex)
            {
                throw new Exception("MatchPlate: " + ex.Message);
            }
        }
Ejemplo n.º 9
0
        private void MatchImage(String Filename, bool add)
        {
            ErrorTB.Text     = "";
            lblExpected.Text = Filename.Substring(0, 6);

            //*************************************//
            //** load and display original image **//
            //*************************************//
            Bitmap bm;

            bm = new Bitmap(Filename);
            RGB888Image plateImage = VisionLabEx.BitmapToJL(bm);

            DisplayImage(plateImage, imgOrig);

            //****************//
            //** Find plate **//
            //****************//
            Int16Image binaryPlateImage = new Int16Image();

            if (!LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage, TresholdConditions.NORMAAL) &&
                !LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage, TresholdConditions.OVERBELICHT) &&
                !LicensePlateMatcher.FindPlate(plateImage, ref binaryPlateImage, TresholdConditions.ONDERBELICHT))
            {
                DisplayImage(binaryPlateImage, imgPlateBin, true, true);
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstFindPlateErr.Items.Add(Filename);
                    lblFindPlateErrCount.Text = lstFindPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }
            DisplayImage(binaryPlateImage, imgPlateBin, true, true);

            //*******************//
            //** Rectify plate **//
            //*******************//
            Int16Image binaryRectifiedImage = new Int16Image();

            do
            {
                // Check if we can find the plate
                if (LicensePlateMatcher.FindCharacters(plateImage, binaryPlateImage, ref binaryRectifiedImage))
                {
                    // if so we are done
                    break;
                }
                else
                {
                    // ************************************
                    // **  Find the biggest blob in the  **
                    // **  image and remove that one     **
                    // ************************************
                    VisionLab.LabelBlobs(binaryPlateImage, Connected.EightConnected);
                    vector_BlobAnalyse ba_vec = new vector_BlobAnalyse();
                    ba_vec.Add(BlobAnalyse.BA_Area);
                    vector_Blob blobs = new vector_Blob();
                    VisionLab.BlobAnalysis(binaryPlateImage, VisionLab.VectorToSet_BlobAnalyse(ba_vec), VisionLab.MaxPixel(binaryPlateImage), blobs);
                    int biggestArea = 0;
                    foreach (Blob ba in blobs)
                    {
                        if (ba.Area() > biggestArea)
                        {
                            biggestArea = ba.Area();
                        }
                    }
                    VisionLab.RemoveBlobs(binaryPlateImage, Connected.EightConnected, BlobAnalyse.BA_Area, biggestArea - 1, biggestArea + 1);
                }
            } // Repeat this until there is nothing left
            while (VisionLab.SumIntPixels(binaryPlateImage) > 0);

            // If that is so it wasn't found
            if (VisionLab.SumIntPixels(binaryPlateImage) == 0)
            {
                // So do all this
                if (imgRectifiedPlate.Image != null)
                {
                    imgRectifiedPlate.Image.Dispose();
                }
                imgRectifiedPlate.Image = null;
                lblLexiconResult.Text   = "";
                if (add)
                {
                    lstRectifyPlateErr.Items.Add(Filename);
                    lblRectfyPlateErrCount.Text = lstRectifyPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }

            DisplayImage(binaryRectifiedImage, imgRectifiedPlate, true, true);


            //*****************//
            //** Match Plate **//
            //*****************//
            LicensePlate result        = new LicensePlate();
            LicensePlate lexiconResult = new LicensePlate();

            if (!LicensePlateMatcher.MatchPlate(binaryRectifiedImage, blobMatcher, lexicon, ref result, ref lexiconResult, false))
            {
                lblLexiconResult.Text = "";
                if (add)
                {
                    lstMatchPlateErr.Items.Add(Filename);
                    lblMatchPlateErrCount.Text = lstMatchPlateErr.Items.Count.ToString();
                }
                ClearResultLabels();
                return;
            }
            // Extra way to up confidence perhaps
            if (result.characters != null && result.confidence < (double)nupConfidence.Value / 100)
            {
                LicensePlateMatcher.MatchPlate(binaryRectifiedImage, blobMatcher, lexicon, ref result, ref lexiconResult, true);
            }

            //*********************//
            //** Process results **//
            //*********************//
            ProcessResults(result, lexiconResult, Filename, (double)nupConfidence.Value / 100, add);

            bm.Dispose();
            plateImage.Dispose();
            binaryPlateImage.Dispose();
            binaryRectifiedImage.Dispose();

            //Force a garbage collect to prevens malloc errors from unmanaged code.
            GC.Collect();
        }
        /*
            Description:
                Read the license plate
            Input:
	            //Rectified license plate image containing six characters	
	            Int16Image labeledRectifiedPlateImage
	            BlobMatcher_Int16 matcher	//initialized blobmatcher
	            ClassLexicon lexicon		//initialized lexicon
            Output:
	            //Result by the blob matcher
	            ref LicensePlate result
	            //Result by the lexicon
	            ref LicensePlate lexiconResult
            Return:
	            //six characters found
	        bool 
        */
        public static bool MatchPlate(Int16Image binaryCharacterImage, BlobMatcher_Int16 matcher, 
            ClassLexicon lexicon, ref LicensePlate result, ref LicensePlate lexiconResult, bool dilate)
        {
            // NIEUW
            // 2de optie voor aanroep als eerste low confidence levert
            if (dilate)
            {
                Int16Image temp = new Int16Image();
                VisionLab.Dilation(binaryCharacterImage, temp, new Mask_Int32(3, 3, 1));
                binaryCharacterImage = new Int16Image(temp);
                temp.Dispose();
            }
            if (VisionLab.LabelBlobs(binaryCharacterImage, Connected.EightConnected) != 6)
                return false;

            //Calculate dimensions and locations of all characters/blobs.
            vector_BlobAnalyse ba_vec = new vector_BlobAnalyse();
            ba_vec.Add(BlobAnalyse.BA_TopLeft);
            ba_vec.Add(BlobAnalyse.BA_Height);
            ba_vec.Add(BlobAnalyse.BA_Width);
            vector_Blob returnBlobs = new vector_Blob();
            VisionLab.BlobAnalysis(binaryCharacterImage, VisionLab.VectorToSet_BlobAnalyse(ba_vec), VisionLab.MaxPixel(binaryCharacterImage), returnBlobs, SortOrder.SortDown, BlobAnalyse.BA_TopLeft, UseXOrY.UseX);
            ba_vec.Dispose();
            Int16Image binaryCharacter = new Int16Image();

            //Create data structure for lexicon.
            vector_vector_LetterMatch match = new vector_vector_LetterMatch();
            
            // NIEUW
            // Change the matcher params
            matcher.ChangeParams(60, 10, 64, 0);
            //Process each character/blob.
            foreach (Blob b in returnBlobs)
            {
                //Cut out character
                VisionLab.ROI(binaryCharacterImage, binaryCharacter, b.TopLeft(), new HeightWidth(b.Height(), b.Width()));
                //Convert ROI result to binary
                VisionLab.ClipPixelValue(binaryCharacter, 0, 1);
                //Calculate character's classification for all classes.
                vector_PatternMatchResult returnMatches = new vector_PatternMatchResult();
                float conf = matcher.AllMatches(binaryCharacter, (float)-0.5, (float)0.5, returnMatches);
                float err = returnMatches[0].error;
                int id = returnMatches[0].id;
                string chr = matcher.PatternName(id);
                // NIEUW
                // If error to big decrease the confidence
                if(err > 0.20f)
                    conf -= 0.2f;
                //Fill datastructure for lexicon.
                match.Add(VisionLabEx.PatternMatchResultToLetterMatch(returnMatches));
                
                //Store best match in result
                result.characters.Add(
                    new LicenseCharacter(
                        chr, 
                        err, 
                        conf,

                        // NIEUW
                        // Extra param: The middle of a character
                        // (used for matching patterns)
                        b.TopLeft().x + ((b.TopRight().x - b.TopLeft().x)/2) ,

                        // NIEUW
                        // All other results that we're found
                        // So we can switch between em
                        returnMatches
                        ));
            }

            //Validate match with lexicon.
            vector_int bestWord = new vector_int();
            lexiconResult.confidence = lexicon.FindBestWord(match, bestWord, Optimize.OptimizeForMinimum);
            for (int i = 0; i < bestWord.Count; i++)
            {
                string character = matcher.PatternName(bestWord[i]);
                //Store lexicon result
                lexiconResult.characters.Add(new LicenseCharacter(character));
            }

            // NIEUW
            // Create the best match with the aid of the pattern matcher
            result.CalculateBestMatch(matcher);
            
            binaryCharacter.Dispose();
            returnBlobs.Dispose();
            match.Dispose();
            bestWord.Dispose();
            GC.Collect();
            return true;
        }
        /*
         *  Description:
         *      Read the license plate
         *  Input:
         *          //Rectified license plate image containing six characters
         *          Int16Image labeledRectifiedPlateImage
         *          BlobMatcher_Int16 matcher	//initialized blobmatcher
         *          ClassLexicon lexicon		//initialized lexicon
         *  Output:
         *          //Result by the blob matcher
         *          ref LicensePlate result
         *          //Result by the lexicon
         *          ref LicensePlate lexiconResult
         *  Return:
         *          //six characters found
         *      bool
         */
        public static bool MatchPlate(Int16Image binaryCharacterImage, BlobMatcher_Int16 matcher,
                                      ClassLexicon lexicon, ref LicensePlate result, ref LicensePlate lexiconResult, bool dilate)
        {
            // NIEUW
            // 2de optie voor aanroep als eerste low confidence levert
            if (dilate)
            {
                Int16Image temp = new Int16Image();
                VisionLab.Dilation(binaryCharacterImage, temp, new Mask_Int32(3, 3, 1));
                binaryCharacterImage = new Int16Image(temp);
                temp.Dispose();
            }
            if (VisionLab.LabelBlobs(binaryCharacterImage, Connected.EightConnected) != 6)
            {
                return(false);
            }

            //Calculate dimensions and locations of all characters/blobs.
            vector_BlobAnalyse ba_vec = new vector_BlobAnalyse();

            ba_vec.Add(BlobAnalyse.BA_TopLeft);
            ba_vec.Add(BlobAnalyse.BA_Height);
            ba_vec.Add(BlobAnalyse.BA_Width);
            vector_Blob returnBlobs = new vector_Blob();

            VisionLab.BlobAnalysis(binaryCharacterImage, VisionLab.VectorToSet_BlobAnalyse(ba_vec), VisionLab.MaxPixel(binaryCharacterImage), returnBlobs, SortOrder.SortDown, BlobAnalyse.BA_TopLeft, UseXOrY.UseX);
            ba_vec.Dispose();
            Int16Image binaryCharacter = new Int16Image();

            //Create data structure for lexicon.
            vector_vector_LetterMatch match = new vector_vector_LetterMatch();

            // NIEUW
            // Change the matcher params
            matcher.ChangeParams(60, 10, 64, 0);
            //Process each character/blob.
            foreach (Blob b in returnBlobs)
            {
                //Cut out character
                VisionLab.ROI(binaryCharacterImage, binaryCharacter, b.TopLeft(), new HeightWidth(b.Height(), b.Width()));
                //Convert ROI result to binary
                VisionLab.ClipPixelValue(binaryCharacter, 0, 1);
                //Calculate character's classification for all classes.
                vector_PatternMatchResult returnMatches = new vector_PatternMatchResult();
                float  conf = matcher.AllMatches(binaryCharacter, (float)-0.5, (float)0.5, returnMatches);
                float  err  = returnMatches[0].error;
                int    id   = returnMatches[0].id;
                string chr  = matcher.PatternName(id);
                // NIEUW
                // If error to big decrease the confidence
                if (err > 0.20f)
                {
                    conf -= 0.2f;
                }
                //Fill datastructure for lexicon.
                match.Add(VisionLabEx.PatternMatchResultToLetterMatch(returnMatches));

                //Store best match in result
                result.characters.Add(
                    new LicenseCharacter(
                        chr,
                        err,
                        conf,

                        // NIEUW
                        // Extra param: The middle of a character
                        // (used for matching patterns)
                        b.TopLeft().x + ((b.TopRight().x - b.TopLeft().x) / 2),

                        // NIEUW
                        // All other results that we're found
                        // So we can switch between em
                        returnMatches
                        ));
            }

            //Validate match with lexicon.
            vector_int bestWord = new vector_int();

            lexiconResult.confidence = lexicon.FindBestWord(match, bestWord, Optimize.OptimizeForMinimum);
            for (int i = 0; i < bestWord.Count; i++)
            {
                string character = matcher.PatternName(bestWord[i]);
                //Store lexicon result
                lexiconResult.characters.Add(new LicenseCharacter(character));
            }

            // NIEUW
            // Create the best match with the aid of the pattern matcher
            result.CalculateBestMatch(matcher);

            binaryCharacter.Dispose();
            returnBlobs.Dispose();
            match.Dispose();
            bestWord.Dispose();
            GC.Collect();
            return(true);
        }