Ejemplo n.º 1
0
        public void Train(ILabeledExampleCollection <LblT, SparseVector <double> > dataset)
        {
            Utils.ThrowException(dataset == null ? new ArgumentNullException("dataset") : null);
            Utils.ThrowException(dataset.Count == 0 ? new ArgumentValueException("dataset") : null);
            Dictionary <LblT, CentroidData> centroids = new Dictionary <LblT, CentroidData>(mLblCmp);

            foreach (LabeledExample <LblT, SparseVector <double> > labeledExample in dataset)
            {
                if (!centroids.ContainsKey(labeledExample.Label))
                {
                    CentroidData centroidData = new CentroidData();
                    centroidData.AddToSum(labeledExample.Example);
                    centroids.Add(labeledExample.Label, centroidData);
                }
                else
                {
                    CentroidData centroidData = centroids[labeledExample.Label];
                    centroidData.AddToSum(labeledExample.Example);
                }
            }
            foreach (CentroidData cenData in centroids.Values)
            {
                cenData.UpdateCentroidLen();
            }
            double learnRate = 1;

            double[][]            dotProd = null;
            SparseMatrix <double> dsMtx   = null;

            if (mIterations > 0)
            {
                dotProd = new double[centroids.Count][];
                dsMtx   = ModelUtils.GetTransposedMatrix(ModelUtils.ConvertToUnlabeledDataset(dataset));
            }
            for (int iter = 1; iter <= mIterations; iter++)
            {
                mLogger.Info("Train", "Iteration {0} / {1} ...", iter, mIterations);
                // compute dot products
                mLogger.Info("Train", "Computing dot products ...");
                int j = 0;
                foreach (KeyValuePair <LblT, CentroidData> labeledCentroid in centroids)
                {
                    mLogger.ProgressNormal(Logger.Level.Info, /*sender=*/ this, "Train", "Centroid {0} / {1} ...", j + 1, centroids.Count);
                    SparseVector <double> cenVec = labeledCentroid.Value.GetSparseVector();
                    dotProd[j] = ModelUtils.GetDotProductSimilarity(dsMtx, dataset.Count, cenVec);
                    j++;
                }
                // classify training examples
                mLogger.Info("Train", "Classifying training examples ...");
                int errCount = 0;
                for (int instIdx = 0; instIdx < dataset.Count; instIdx++)
                {
                    mLogger.ProgressFast(Logger.Level.Info, /*sender=*/ this, "Train", "Example {0} / {1} ...", instIdx + 1, dataset.Count);
                    double       maxSim           = double.MinValue;
                    CentroidData assignedCentroid = null;
                    CentroidData actualCentroid   = null;
                    LabeledExample <LblT, SparseVector <double> > labeledExample = dataset[instIdx];
                    SparseVector <double> vec = labeledExample.Example;
                    int cenIdx = 0;
                    foreach (KeyValuePair <LblT, CentroidData> labeledCentroid in centroids)
                    {
                        double sim = dotProd[cenIdx][instIdx];
                        if (sim > maxSim)
                        {
                            maxSim = sim; assignedCentroid = labeledCentroid.Value;
                        }
                        if (labeledCentroid.Key.Equals(labeledExample.Label))
                        {
                            actualCentroid = labeledCentroid.Value;
                        }
                        cenIdx++;
                    }
                    if (assignedCentroid != actualCentroid)
                    {
                        assignedCentroid.AddToDiff(-learnRate, vec);
                        actualCentroid.AddToDiff(learnRate, vec);
                        errCount++;
                    }
                }
                mLogger.Info("Train", "Training set error rate: {0:0.00}%", (double)errCount / (double)dataset.Count * 100.0);
                // update centroids
                int k = 0;
                foreach (CentroidData centroidData in centroids.Values)
                {
                    mLogger.ProgressNormal(Logger.Level.Info, /*sender=*/ this, "Train", "Centroid {0} / {1} ...", ++k, centroids.Count);
                    centroidData.Update(mPositiveValuesOnly);
                    centroidData.UpdateCentroidLen();
                }
                learnRate *= mDamping;
            }
            mCentroidMtxTr = new SparseMatrix <double>();
            mLabels        = new ArrayList <LblT>();
            int rowIdx = 0;

            foreach (KeyValuePair <LblT, CentroidData> labeledCentroid in centroids)
            {
                mCentroidMtxTr[rowIdx++] = labeledCentroid.Value.GetSparseVector();
                mLabels.Add(labeledCentroid.Key);
            }
            mCentroidMtxTr = mCentroidMtxTr.GetTransposedCopy();
        }
        public void Train(IExampleCollection <LblT, SparseVector <double> .ReadOnly> dataset)
        {
            Utils.ThrowException(dataset == null ? new ArgumentNullException("dataset") : null);
            Utils.ThrowException(dataset.Count == 0 ? new ArgumentValueException("dataset") : null);
            m_centroids = new Dictionary <LblT, CentroidData>();
            foreach (LabeledExample <LblT, SparseVector <double> .ReadOnly> labeled_example in dataset)
            {
                if (!m_centroids.ContainsKey(labeled_example.Label))
                {
                    CentroidData centroid_data = new CentroidData();
                    centroid_data.AddToSum(labeled_example.Example);
                    m_centroids.Add(labeled_example.Label, centroid_data);
                }
                else
                {
                    CentroidData centroid_data = m_centroids[labeled_example.Label];
                    centroid_data.AddToSum(labeled_example.Example);
                }
            }
            foreach (CentroidData vec_data in m_centroids.Values)
            {
                vec_data.UpdateCentroidLen();
            }
            double learn_rate = 1;

            for (int iter = 1; iter <= m_iterations; iter++)
            {
                Utils.VerboseLine("Iteration {0} / {1} ...", iter, m_iterations);
                // classify training documents
                int i          = 0;
                int num_miscfy = 0;
                foreach (LabeledExample <LblT, SparseVector <double> .ReadOnly> labeled_example in dataset)
                {
                    Utils.Verbose("\rExample {0} / {1} ...", ++i, dataset.Count);
                    double       max_sim                = double.MinValue;
                    CentroidData assigned_centroid      = null;
                    CentroidData actual_centroid        = null;
                    SparseVector <double> .ReadOnly vec = labeled_example.Example;
                    foreach (KeyValuePair <LblT, CentroidData> labeled_centroid in m_centroids)
                    {
                        double sim = labeled_centroid.Value.GetSimilarity(vec);
                        if (sim > max_sim)
                        {
                            max_sim = sim; assigned_centroid = labeled_centroid.Value;
                        }
                        if (labeled_centroid.Key.Equals(labeled_example.Label))
                        {
                            actual_centroid = labeled_centroid.Value;
                        }
                    }
                    if (assigned_centroid != actual_centroid)
                    {
                        assigned_centroid.AddToDiff(-learn_rate, vec);
                        actual_centroid.AddToDiff(learn_rate, vec);
                        num_miscfy++;
                    }
                }
                Utils.VerboseLine("");
                Utils.VerboseLine("Training set error rate: {0:0.00}%", (double)num_miscfy / (double)dataset.Count * 100.0);
                // update centroids
                i = 0;
                foreach (CentroidData centroid_data in m_centroids.Values)
                {
                    Utils.Verbose("\rCentroid {0} / {1} ...", ++i, m_centroids.Count);
                    centroid_data.UpdateCentroid(m_positive_values_only);
                    centroid_data.UpdateCentroidLen();
                }
                Utils.VerboseLine("");
                learn_rate *= m_damping;
            }
        }