Ejemplo n.º 1
0
        public override JObject ToJObject()
        {
            var jobj = new JObject();

            jobj["units"] = _units;

            if (_inputShape != null)
            {
                jobj["input_shape"] = new JArray(_inputShape);
            }

            KerasUtils.AddActivation(jobj, _activation);

            if (_kernelInitializer.GetType() == typeof(string))
            {
                jobj["kernel_initializer"] = (string)_kernelInitializer;
            }
            else
            {
                jobj["kernel_initializer"] = (_kernelInitializer as GraphOp).ToJObject();
            }

            jobj["op"] = "Dense";
            return(jobj);
        }
Ejemplo n.º 2
0
        public override JObject ToJObject()
        {
            var jobj = new JObject();

            jobj["units"] = _units;

            if (_inputShape != null)
            {
                jobj["input_shape"] = new JArray(_inputShape);
            }

            jobj["use_bias"] = _useBias;

            KerasUtils.AddActivation(jobj, _activation);
            KerasUtils.AddActivation(jobj, "recurrent_activation", _recurrentActivation);

            KerasUtils.AddStringOrObject(jobj, "kernel_initializer", _kernelInitializer);
            KerasUtils.AddStringOrObject(jobj, "recurrent_initializer", _recurrentInitializer);
            KerasUtils.AddStringOrObject(jobj, "bias_initializer", _biasInitializer);

            jobj["unit_forget_bias"] = _unitForgetBias;

            KerasUtils.AddStringOrObject(jobj, "kernel_regularizer", _kernelRegularizer);
            KerasUtils.AddStringOrObject(jobj, "recurrent_regularizer", _recurrentRegularizer);
            KerasUtils.AddStringOrObject(jobj, "bias_regularizer", _biasRegularizer);
            KerasUtils.AddStringOrObject(jobj, "activity_regularizer", _activityRegularizer);

            jobj["dropout"]           = _dropout;
            jobj["recurrent_dropout"] = _recurrentDropout;

            jobj["op"] = "LSTM";
            return(jobj);
        }
Ejemplo n.º 3
0
        public override JObject ToJObject()
        {
            var jobj = new JObject()
            {
                ["input_dim"]  = _inputDim,
                ["output_dim"] = _outputDim,
                ["mask_zero"]  = _maskZero
            };

            KerasUtils.AddStringOrObject(jobj, "embedding_initializer", _embeddingInitializer);
            KerasUtils.AddStringOrObject(jobj, "embedding_regularizer", _embeddingRegularizer);

            if (_inputLength.HasValue)
            {
                jobj.Add("input_length", _inputLength.Value);
            }

            if (_inputShape != null)
            {
                jobj["input_shape"] = new JArray(_inputShape);
            }

            jobj["op"] = "Embedding";
            return(jobj);
        }
Ejemplo n.º 4
0
 public AveragePooling2D(object poolSize = null, object strides = null, string padding = "valid", string dataFormat = null, int[] inputShape = null)
 {
     _poolSize   = poolSize == null ? new int[] { 2, 2 } : KerasUtils.GetArray(poolSize, 2);
     _strides    = strides == null ? _poolSize : KerasUtils.GetArray(strides, 2);
     _padding    = padding;
     _dataFormat = dataFormat == null ? Globals.DataFormat : dataFormat;
     _inputShape = inputShape;
 }
Ejemplo n.º 5
0
        public override JObject ToJObject()
        {
            var jobj = new JObject();

            jobj["filters"]     = _filters;
            jobj["kernel_size"] = new JArray(_kernelSize);
            jobj["strides"]     = new JArray(_strides);
            jobj["use_bias"]    = _useBias;

            if (_inputShape != null)
            {
                jobj["input_shape"] = new JArray(_inputShape);
            }

            KerasUtils.AddActivation(jobj, _activation);

            jobj["bias_initializer"] = "zeros";

            jobj.Add("op", "Conv2D");
            return(jobj);
        }
Ejemplo n.º 6
0
        public Conv2D(int filters, object kernelSize, object strides = null, object activation = null, bool useBias = true, int [] inputShape = null)
        {
            _inputShape = inputShape;
            _kernelSize = KerasUtils.GetArray(kernelSize, 2);
            if (_kernelSize == null)
            {
                throw new ArgumentException("The kernelSize parameter type is not supported.");
            }
            _filters    = filters;
            _activation = activation;
            _useBias    = useBias;
            if (strides == null)
            {
                _strides = new int[] { 1, 1 }
            }
            ;
            else
            {
                _strides = KerasUtils.GetArray(strides, 2);
            }

            _op = "Conv2D";
        }