Ejemplo n.º 1
0
        /// <summary>
        /// Attempt a virtual dispatch on a given instanceType based on the method found via a metadata token
        /// </summary>
        private static bool TryDispatchMethodOnTarget_Inner(NativeFormatModuleInfo module, int metadataToken, RuntimeTypeHandle targetInstanceType, out IntPtr methodAddress)
        {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
            TypeSystemContext context = TypeSystemContextFactory.Create();

            NativeFormatMetadataUnit metadataUnit = context.ResolveMetadataUnit(module);
            MethodDesc targetMethod = metadataUnit.GetMethod(metadataToken.AsHandle(), null);
            TypeDesc   instanceType = context.ResolveRuntimeTypeHandle(targetInstanceType);

            MethodDesc realTargetMethod = targetMethod;

            // For non-interface methods we support the target method not being the exact target. (This allows
            // a canonical method to be passed in and work for any generic type instantiation.)
            if (!targetMethod.OwningType.IsInterface)
            {
                realTargetMethod = instanceType.FindMethodOnTypeWithMatchingTypicalMethod(targetMethod);
            }

            bool success = LazyVTableResolver.TryDispatchMethodOnTarget(instanceType, realTargetMethod, out methodAddress);

            TypeSystemContextFactory.Recycle(context);
            return(success);
#else
            methodAddress = IntPtr.Zero;
            return(false);
#endif
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Attempt to convert the dispatch cell to a metadata token to a more efficient vtable dispatch or interface/slot dispatch.
        /// Failure to convert is not a correctness issue. We also support performing a dispatch based on metadata token alone.
        /// </summary>
        private static DispatchCellInfo ConvertDispatchCellInfo_Inner(NativeFormatModuleInfo module, DispatchCellInfo cellInfo)
        {
            Debug.Assert(cellInfo.CellType == DispatchCellType.MetadataToken);

            TypeSystemContext context = TypeSystemContextFactory.Create();

            MethodDesc targetMethod = context.ResolveMetadataUnit(module).GetMethod(cellInfo.MetadataToken.AsHandle(), null);
            Debug.Assert(!targetMethod.HasInstantiation); // At this time we do not support generic virtuals through the dispatch mechanism
            Debug.Assert(targetMethod.IsVirtual);
            if (targetMethod.OwningType.IsInterface)
            {
                if (!LazyVTableResolver.TryGetInterfaceSlotNumberFromMethod(targetMethod, out cellInfo.InterfaceSlot))
                {
                    // Unable to resolve interface method. Fail, by not mutating cellInfo
                    return cellInfo;
                }

                if (!targetMethod.OwningType.RetrieveRuntimeTypeHandleIfPossible())
                {
                    new TypeBuilder().BuildType(targetMethod.OwningType);
                }

                cellInfo.CellType = DispatchCellType.InterfaceAndSlot;
                cellInfo.InterfaceType = targetMethod.OwningType.RuntimeTypeHandle.ToIntPtr();
                cellInfo.MetadataToken = 0;
            }
            else
            {
                // Virtual function case, attempt to resolve to a VTable slot offset.
                // If the offset is less than 4096 update the cellInfo
#if DEBUG
                // The path of resolving a metadata token at dispatch time is relatively rare in practice.
                // Force it to occur in debug builds with much more regularity
                if ((s_ConvertDispatchCellInfoCounter % 16) == 0)
                {
                    s_ConvertDispatchCellInfoCounter++;
                    TypeSystemContextFactory.Recycle(context);
                    return cellInfo;
                }
                s_ConvertDispatchCellInfoCounter++;
#endif

                int slotIndexOfMethod = LazyVTableResolver.VirtualMethodToSlotIndex(targetMethod);
                int vtableOffset = -1;
                if (slotIndexOfMethod >= 0)
                    vtableOffset = LazyVTableResolver.SlotIndexToEETypeVTableOffset(slotIndexOfMethod);
                if ((vtableOffset < 4096) && (vtableOffset != -1))
                {
                    cellInfo.CellType = DispatchCellType.VTableOffset;
                    cellInfo.VTableOffset = checked((uint)vtableOffset);
                    cellInfo.MetadataToken = 0;
                }
                // Otherwise, do nothing, and resolve with a metadata dispatch later
            }

            TypeSystemContextFactory.Recycle(context);
            return cellInfo;
        }
Ejemplo n.º 3
0
        private bool ResolveInterfaceGenericVirtualMethodSlot(RuntimeTypeHandle targetTypeHandle, ref RuntimeTypeHandle declaringType, ref MethodNameAndSignature methodNameAndSignature)
        {
            if (IsPregeneratedOrTemplateRuntimeTypeHandle(targetTypeHandle))
            {
                // If the target type isn't dynamic, or at least is template type generated, the static lookup logic is what we want.
                return(ResolveInterfaceGenericVirtualMethodSlot_Static(targetTypeHandle, ref declaringType, ref methodNameAndSignature));
            }
            else
            {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
                TypeSystemContext context    = TypeSystemContextFactory.Create();
                DefType           targetType = (DefType)context.ResolveRuntimeTypeHandle(targetTypeHandle);

                // Method being called...
                MethodDesc targetVirtualMethod = ResolveTypeHandleAndMethodNameAndSigToVirtualMethodDesc(context, declaringType, methodNameAndSignature);

                if (targetVirtualMethod == null)
                {
                    // If we can't find the method in the type system, it must only be present in the static environment. Search there instead.
                    TypeSystemContextFactory.Recycle(context);
                    return(ResolveInterfaceGenericVirtualMethodSlot_Static(targetTypeHandle, ref declaringType, ref methodNameAndSignature));
                }

                TypeDesc   instanceDefTypeToExamine;
                MethodDesc newlyFoundVirtualMethod = LazyVTableResolver.ResolveInterfaceMethodToVirtualMethod(targetType, out instanceDefTypeToExamine, targetVirtualMethod);

                targetVirtualMethod = newlyFoundVirtualMethod;

                // The pregenerated base type must be the one that implements the interface method
                // Call into Redhawk to deal with this.
                if ((newlyFoundVirtualMethod == null) && (instanceDefTypeToExamine != null))
                {
                    TypeSystemContextFactory.Recycle(context);
                    // If we can't find the method in the type system, the overload must be defined in the static environment. Search there instead.
                    return(ResolveInterfaceGenericVirtualMethodSlot_Static(instanceDefTypeToExamine.GetRuntimeTypeHandle(), ref declaringType, ref methodNameAndSignature));
                }

                declaringType          = targetVirtualMethod.OwningType.GetRuntimeTypeHandle();
                methodNameAndSignature = targetVirtualMethod.NameAndSignature;
                TypeSystemContextFactory.Recycle(context);
                return(true);
#else
                Environment.FailFast("GVM Resolution for non template or pregenerated type");
                return(false);
#endif
            }
        }
        /// <summary>
        /// Resolve a dispatch on an interface EEType/slot index pair to a function pointer
        /// </summary>
        private bool TryResolveTypeSlotDispatch_Inner(IntPtr targetTypeAsIntPtr, IntPtr interfaceTypeAsIntPtr, ushort slot, out IntPtr methodAddress)
        {
            methodAddress = IntPtr.Zero;

#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
            TypeSystemContext context = TypeSystemContextFactory.Create();

            TypeDesc targetType;
            TypeDesc interfaceType;

            unsafe
            {
                targetType    = context.ResolveRuntimeTypeHandle(((EEType *)targetTypeAsIntPtr.ToPointer())->ToRuntimeTypeHandle());
                interfaceType = context.ResolveRuntimeTypeHandle(((EEType *)interfaceTypeAsIntPtr.ToPointer())->ToRuntimeTypeHandle());
            }

            if (!(interfaceType.GetTypeDefinition() is MetadataType))
            {
                // If the interface open type is not a metadata type, this must be an interface not known in the metadata world.
                // Use the redhawk resolver for this directly.
                TypeDesc pregeneratedType = LazyVTableResolver.GetMostDerivedPregeneratedOrTemplateLoadedType(targetType);
                pregeneratedType.RetrieveRuntimeTypeHandleIfPossible();
                interfaceType.RetrieveRuntimeTypeHandleIfPossible();
                methodAddress = RuntimeAugments.ResolveDispatchOnType(pregeneratedType.RuntimeTypeHandle, interfaceType.RuntimeTypeHandle, slot);
            }
            else
            {
                MethodDesc interfaceMethod;

                if (!LazyVTableResolver.TryGetMethodFromInterfaceSlot(interfaceType, slot, out interfaceMethod))
                {
                    return(false);
                }

                if (!LazyVTableResolver.TryDispatchMethodOnTarget(targetType, interfaceMethod, out methodAddress))
                {
                    return(false);
                }
            }

            TypeSystemContextFactory.Recycle(context);

            return(true);
#else
            return(false);
#endif
        }
Ejemplo n.º 5
0
        /// <summary>
        /// Try to resolve a virtual call to targetMethod to its implementation on instanceType.
        /// </summary>
        /// <param name="instanceType">non-interface type</param>
        /// <param name="targetMethod">non-generic virtual or interface method</param>
        /// <param name="methodAddress">function pointer resolved</param>
        /// <returns>true if successful</returns>
        public static bool TryDispatchMethodOnTarget(TypeDesc instanceType, MethodDesc targetMethod, out IntPtr methodAddress)
        {
            methodAddress = IntPtr.Zero;

            if (targetMethod == null)
            {
                return(false);
            }

            if (IsPregeneratedOrTemplateTypeLoaded(instanceType))
            {
                if (targetMethod.OwningType.IsInterface)
                {
                    ushort interfaceSlot;
                    if (!TryGetInterfaceSlotNumberFromMethod(targetMethod, out interfaceSlot))
                    {
                        return(false);
                    }
                    methodAddress = RuntimeAugments.ResolveDispatchOnType(instanceType.GetRuntimeTypeHandle(),
                                                                          targetMethod.OwningType.GetRuntimeTypeHandle(),
                                                                          interfaceSlot);
                    Debug.Assert(methodAddress != IntPtr.Zero); // TODO! This should happen for ICastable dispatch...
                    return(true);
                }
                else
                {
                    unsafe
                    {
                        int     vtableSlotIndex = LazyVTableResolver.VirtualMethodToSlotIndex(targetMethod);
                        EEType *eeType          = instanceType.GetRuntimeTypeHandle().ToEETypePtr();
                        IntPtr *vtableStart     = (IntPtr *)(((byte *)eeType) + sizeof(EEType));

                        methodAddress = vtableStart[vtableSlotIndex];
                        return(true);
                    }
                }
            }

            MethodDesc targetVirtualMethod = targetMethod;
            DefType    instanceDefType     = instanceType.GetClosestDefType();

            // For interface resolution, its a two step process, first get the virtual slot
            if (targetVirtualMethod.OwningType.IsInterface)
            {
                TypeDesc   instanceDefTypeToExamine;
                MethodDesc newlyFoundVirtualMethod = ResolveInterfaceMethodToVirtualMethod(instanceType, out instanceDefTypeToExamine, targetVirtualMethod);

                targetVirtualMethod = newlyFoundVirtualMethod;

                // The pregenerated type must be the one that implements the interface method
                // Call into Redhawk to deal with this.
                if ((newlyFoundVirtualMethod == null) && (instanceDefTypeToExamine != null))
                {
                    ushort interfaceSlot;
                    if (!TryGetInterfaceSlotNumberFromMethod(targetMethod, out interfaceSlot))
                    {
                        return(false);
                    }
                    methodAddress = RuntimeAugments.ResolveDispatchOnType(instanceDefTypeToExamine.GetRuntimeTypeHandle(),
                                                                          targetMethod.OwningType.GetRuntimeTypeHandle(),
                                                                          interfaceSlot);

                    Debug.Assert(methodAddress != IntPtr.Zero); // TODO! This should happen for ICastable dispatch...
                    return(true);
                }
            }

            // VirtualSlot can be null if the interface method isn't really implemented. This should never happen, but since our
            // type loader doesn't check all interface overloads at load time, it could happen
            if (targetVirtualMethod == null)
            {
                return(false);
            }

            // Resolve virtual method to exact method
            MethodDesc dispatchMethod = instanceDefType.FindVirtualFunctionTargetMethodOnObjectType(targetVirtualMethod);

            return(TryGetVTableCallableAddress(dispatchMethod, out methodAddress));
        }
Ejemplo n.º 6
0
        private ushort ComputeNumVTableSlots()
        {
            if (TypeBeingBuilt.RetrieveRuntimeTypeHandleIfPossible())
            {
                unsafe
                {
                    return(TypeBeingBuilt.RuntimeTypeHandle.ToEETypePtr()->NumVtableSlots);
                }
            }
            else
            {
                TypeDesc templateType = TypeBeingBuilt.ComputeTemplate(false);
                if (templateType != null)
                {
                    // Template type loader case
                    if (VTableSlotsMapping != null)
                    {
                        return(checked ((ushort)VTableSlotsMapping.NumSlotMappings));
                    }
                    else
                    {
                        // This should only happen for non-universal templates
                        Debug.Assert(TypeBeingBuilt.IsTemplateCanonical());

                        // Canonical template type loader case
                        unsafe
                        {
                            return(templateType.GetRuntimeTypeHandle().ToEETypePtr()->NumVtableSlots);
                        }
                    }
                }
                else if (TypeBeingBuilt.IsMdArray)
                {
                    // MDArray types have the same vtable as the System.Array type they "derive" from.
                    unsafe
                    {
                        return(TypeBeingBuilt.BaseType.GetRuntimeTypeHandle().ToEETypePtr()->NumVtableSlots);
                    }
                }
                else
                {
                    // Metadata based type loading.

                    // Generic Type Definitions have no actual vtable entries
                    if (TypeBeingBuilt.IsGenericDefinition)
                    {
                        return(0);
                    }

                    // We have at least as many slots as exist on the base type.

                    ushort numVTableSlots = 0;
                    checked
                    {
                        if (TypeBeingBuilt.BaseType != null)
                        {
                            numVTableSlots = TypeBeingBuilt.BaseType.GetOrCreateTypeBuilderState().NumVTableSlots;
                        }
                        else
                        {
                            // Generic interfaces have a dictionary slot
                            if (TypeBeingBuilt.IsInterface && TypeBeingBuilt.HasInstantiation)
                            {
                                numVTableSlots = 1;
                            }
                        }

                        // Interfaces have actual vtable slots
                        if (TypeBeingBuilt.IsInterface)
                        {
                            return(numVTableSlots);
                        }

                        foreach (MethodDesc method in TypeBeingBuilt.GetMethods())
                        {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
                            if (LazyVTableResolver.MethodDefinesVTableSlot(method))
                            {
                                numVTableSlots++;
                            }
#else
                            Environment.FailFast("metadata type loader required");
#endif
                        }

                        if (HasDictionarySlotInVTable)
                        {
                            numVTableSlots++;
                        }
                    }

                    return(numVTableSlots);
                }
            }
        }
Ejemplo n.º 7
0
        private static void CreateEETypeWorker(EEType *pTemplateEEType, UInt32 hashCodeOfNewType,
                                               int arity, bool requireVtableSlotMapping, TypeBuilderState state)
        {
            bool           successful            = false;
            IntPtr         eeTypePtrPlusGCDesc   = IntPtr.Zero;
            IntPtr         dynamicDispatchMapPtr = IntPtr.Zero;
            DynamicModule *dynamicModulePtr      = null;

            try
            {
                Debug.Assert((pTemplateEEType != null) || (state.TypeBeingBuilt as MetadataType != null));

                // In some situations involving arrays we can find as a template a dynamically generated type.
                // In that case, the correct template would be the template used to create the dynamic type in the first
                // place.
                if (pTemplateEEType != null && pTemplateEEType->IsDynamicType)
                {
                    pTemplateEEType = pTemplateEEType->DynamicTemplateType;
                }

                ModuleInfo moduleInfo = TypeLoaderEnvironment.GetModuleInfoForType(state.TypeBeingBuilt);
                dynamicModulePtr = moduleInfo.DynamicModulePtr;
                Debug.Assert(dynamicModulePtr != null);

                bool requiresDynamicDispatchMap = requireVtableSlotMapping && (pTemplateEEType != null) && pTemplateEEType->HasDispatchMap;

                uint valueTypeFieldPaddingEncoded = 0;
                int  baseSize = 0;

                bool   isValueType;
                bool   hasFinalizer;
                bool   isNullable;
                bool   isArray;
                bool   isGeneric;
                ushort componentSize = 0;
                ushort flags;
                ushort runtimeInterfacesLength = 0;
                bool   isGenericEETypeDef      = false;

                if (state.RuntimeInterfaces != null)
                {
                    runtimeInterfacesLength = checked ((ushort)state.RuntimeInterfaces.Length);
                }

                if (pTemplateEEType != null)
                {
                    valueTypeFieldPaddingEncoded = EEType.ComputeValueTypeFieldPaddingFieldValue(
                        pTemplateEEType->ValueTypeFieldPadding,
                        (uint)pTemplateEEType->FieldAlignmentRequirement);
                    baseSize      = (int)pTemplateEEType->BaseSize;
                    isValueType   = pTemplateEEType->IsValueType;
                    hasFinalizer  = pTemplateEEType->IsFinalizable;
                    isNullable    = pTemplateEEType->IsNullable;
                    componentSize = pTemplateEEType->ComponentSize;
                    flags         = pTemplateEEType->Flags;
                    isArray       = pTemplateEEType->IsArray;
                    isGeneric     = pTemplateEEType->IsGeneric;
                    Debug.Assert(pTemplateEEType->NumInterfaces == runtimeInterfacesLength);
                }
                else if (state.TypeBeingBuilt.IsGenericDefinition)
                {
                    flags       = (ushort)EETypeKind.GenericTypeDefEEType;
                    isValueType = state.TypeBeingBuilt.IsValueType;
                    if (isValueType)
                    {
                        flags |= (ushort)EETypeFlags.ValueTypeFlag;
                    }

                    if (state.TypeBeingBuilt.IsInterface)
                    {
                        flags |= (ushort)EETypeFlags.IsInterfaceFlag;
                    }
                    hasFinalizer       = false;
                    isArray            = false;
                    isNullable         = false;
                    isGeneric          = false;
                    isGenericEETypeDef = true;
                    componentSize      = checked ((ushort)state.TypeBeingBuilt.Instantiation.Length);
                    baseSize           = 0;
                }
                else
                {
                    isValueType  = state.TypeBeingBuilt.IsValueType;
                    hasFinalizer = state.TypeBeingBuilt.HasFinalizer;
                    isNullable   = state.TypeBeingBuilt.GetTypeDefinition().IsNullable;
                    flags        = EETypeBuilderHelpers.ComputeFlags(state.TypeBeingBuilt);
                    isArray      = false;
                    isGeneric    = state.TypeBeingBuilt.HasInstantiation;

                    if (state.TypeBeingBuilt.HasVariance)
                    {
                        state.GenericVarianceFlags = new int[state.TypeBeingBuilt.Instantiation.Length];
                        int i = 0;

                        foreach (GenericParameterDesc gpd in state.TypeBeingBuilt.GetTypeDefinition().Instantiation)
                        {
                            state.GenericVarianceFlags[i] = (int)gpd.Variance;
                            i++;
                        }
                        Debug.Assert(i == state.GenericVarianceFlags.Length);
                    }
                }

                // TODO! Change to if template is Universal or non-Existent
                if (state.TypeSize.HasValue)
                {
                    baseSize = state.TypeSize.Value;

                    int baseSizeBeforeAlignment = baseSize;

                    baseSize = MemoryHelpers.AlignUp(baseSize, IntPtr.Size);

                    if (isValueType)
                    {
                        // Compute the valuetype padding size based on size before adding the object type pointer field to the size
                        uint cbValueTypeFieldPadding = (uint)(baseSize - baseSizeBeforeAlignment);

                        // Add Object type pointer field to base size
                        baseSize += IntPtr.Size;

                        valueTypeFieldPaddingEncoded = (uint)EEType.ComputeValueTypeFieldPaddingFieldValue(cbValueTypeFieldPadding, (uint)state.FieldAlignment.Value);
                    }

                    // Minimum base size is 3 pointers, and requires us to bump the size of an empty class type
                    if (baseSize <= IntPtr.Size)
                    {
                        // ValueTypes should already have had their size bumped up by the normal type layout process
                        Debug.Assert(!isValueType);
                        baseSize += IntPtr.Size;
                    }

                    // Add sync block skew
                    baseSize += IntPtr.Size;

                    // Minimum basesize is 3 pointers
                    Debug.Assert(baseSize >= (IntPtr.Size * 3));
                }

                // Optional fields encoding
                int cbOptionalFieldsSize;
                OptionalFieldsRuntimeBuilder optionalFields;
                {
                    optionalFields = new OptionalFieldsRuntimeBuilder(pTemplateEEType != null ? pTemplateEEType->OptionalFieldsPtr : null);

                    UInt32 rareFlags = optionalFields.GetFieldValue(EETypeOptionalFieldTag.RareFlags, 0);
                    rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeFlag;           // Set the IsDynamicTypeFlag
                    rareFlags &= ~(uint)EETypeRareFlags.NullableTypeViaIATFlag;     // Remove the NullableTypeViaIATFlag flag
                    rareFlags &= ~(uint)EETypeRareFlags.HasSealedVTableEntriesFlag; // Remove the HasSealedVTableEntriesFlag
                                                                                    // we'll set IsDynamicTypeWithSealedVTableEntriesFlag instead

                    // Set the IsDynamicTypeWithSealedVTableEntriesFlag if needed
                    if (state.NumSealedVTableEntries > 0)
                    {
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithSealedVTableEntriesFlag;
                    }

                    if (requiresDynamicDispatchMap)
                    {
                        rareFlags |= (uint)EETypeRareFlags.HasDynamicallyAllocatedDispatchMapFlag;
                    }

                    if (state.NonGcDataSize != 0)
                    {
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithNonGcStatics;
                    }

                    if (state.GcDataSize != 0)
                    {
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithGcStatics;
                    }

                    if (state.ThreadDataSize != 0)
                    {
                        rareFlags |= (uint)EETypeRareFlags.IsDynamicTypeWithThreadStatics;
                    }

#if ARM
                    if (state.FieldAlignment == 8)
                    {
                        rareFlags |= (uint)EETypeRareFlags.RequiresAlign8Flag;
                    }
                    else
                    {
                        rareFlags &= ~(uint)EETypeRareFlags.RequiresAlign8Flag;
                    }

                    if (state.IsHFA)
                    {
                        rareFlags |= (uint)EETypeRareFlags.IsHFAFlag;
                    }
                    else
                    {
                        rareFlags &= ~(uint)EETypeRareFlags.IsHFAFlag;
                    }
#endif
                    if (state.HasStaticConstructor)
                    {
                        rareFlags |= (uint)EETypeRareFlags.HasCctorFlag;
                    }
                    else
                    {
                        rareFlags &= ~(uint)EETypeRareFlags.HasCctorFlag;
                    }

                    rareFlags |= (uint)EETypeRareFlags.HasDynamicModuleFlag;

                    optionalFields.SetFieldValue(EETypeOptionalFieldTag.RareFlags, rareFlags);

                    // Dispatch map is fetched either from template type, or from the dynamically allocated DispatchMap field
                    optionalFields.ClearField(EETypeOptionalFieldTag.DispatchMap);

                    optionalFields.ClearField(EETypeOptionalFieldTag.ValueTypeFieldPadding);

                    if (valueTypeFieldPaddingEncoded != 0)
                    {
                        optionalFields.SetFieldValue(EETypeOptionalFieldTag.ValueTypeFieldPadding, valueTypeFieldPaddingEncoded);
                    }

                    // Compute size of optional fields encoding
                    cbOptionalFieldsSize = optionalFields.Encode();
                    Debug.Assert(cbOptionalFieldsSize > 0);
                }

                // Note: The number of vtable slots on the EEType to create is not necessary equal to the number of
                // vtable slots on the template type for universal generics (see ComputeVTableLayout)
                ushort numVtableSlots = state.NumVTableSlots;

                // Compute the EEType size and allocate it
                EEType *pEEType;
                {
                    // In order to get the size of the EEType to allocate we need the following information
                    // 1) The number of VTable slots (from the TypeBuilderState)
                    // 2) The number of Interfaces (from the template)
                    // 3) Whether or not there is a finalizer (from the template)
                    // 4) Optional fields size
                    // 5) Whether or not the type is nullable (from the template)
                    // 6) Whether or not the type has sealed virtuals (from the TypeBuilderState)
                    int cbEEType = (int)EEType.GetSizeofEEType(
                        numVtableSlots,
                        runtimeInterfacesLength,
                        hasFinalizer,
                        true,
                        isNullable,
                        state.NumSealedVTableEntries > 0,
                        isGeneric,
                        state.NonGcDataSize != 0,
                        state.GcDataSize != 0,
                        state.ThreadDataSize != 0);

                    // Dynamic types have an extra pointer-sized field that contains a pointer to their template type
                    cbEEType += IntPtr.Size;

                    // Check if we need another pointer sized field for a dynamic DispatchMap
                    cbEEType += (requiresDynamicDispatchMap ? IntPtr.Size : 0);

                    // Add another pointer sized field for a DynamicModule
                    cbEEType += IntPtr.Size;

                    int cbGCDesc        = GetInstanceGCDescSize(state, pTemplateEEType, isValueType, isArray);
                    int cbGCDescAligned = MemoryHelpers.AlignUp(cbGCDesc, IntPtr.Size);

                    // Allocate enough space for the EEType + gcDescSize
                    eeTypePtrPlusGCDesc = MemoryHelpers.AllocateMemory(cbGCDescAligned + cbEEType + cbOptionalFieldsSize);

                    // Get the EEType pointer, and the template EEType pointer
                    pEEType = (EEType *)(eeTypePtrPlusGCDesc + cbGCDescAligned);
                    state.HalfBakedRuntimeTypeHandle = pEEType->ToRuntimeTypeHandle();

                    // Set basic EEType fields
                    pEEType->ComponentSize  = componentSize;
                    pEEType->Flags          = flags;
                    pEEType->BaseSize       = (uint)baseSize;
                    pEEType->NumVtableSlots = numVtableSlots;
                    pEEType->NumInterfaces  = runtimeInterfacesLength;
                    pEEType->HashCode       = hashCodeOfNewType;

                    // Write the GCDesc
                    bool isSzArray = isArray ? state.ArrayRank < 1 : false;
                    int  arrayRank = isArray ? state.ArrayRank.Value : 0;
                    CreateInstanceGCDesc(state, pTemplateEEType, pEEType, baseSize, cbGCDesc, isValueType, isArray, isSzArray, arrayRank);
                    Debug.Assert(pEEType->HasGCPointers == (cbGCDesc != 0));

#if GENERICS_FORCE_USG
                    if (state.NonUniversalTemplateType != null)
                    {
                        Debug.Assert(state.NonUniversalInstanceGCDescSize == cbGCDesc, "Non-universal instance GCDesc size not matching with universal GCDesc size!");
                        Debug.Assert(cbGCDesc == 0 || pEEType->HasGCPointers);

                        // The TestGCDescsForEquality helper will compare 2 GCDescs for equality, 4 bytes at a time (GCDesc contents treated as integers), and will read the
                        // GCDesc data in *reverse* order for instance GCDescs (subtracts 4 from the pointer values at each iteration).
                        //    - For the first GCDesc, we use (pEEType - 4) to point to the first 4-byte integer directly preceeding the EEType
                        //    - For the second GCDesc, given that the state.NonUniversalInstanceGCDesc already points to the first byte preceeding the template EEType, we
                        //      subtract 3 to point to the first 4-byte integer directly preceeding the template EEtype
                        TestGCDescsForEquality(new IntPtr((byte *)pEEType - 4), state.NonUniversalInstanceGCDesc - 3, cbGCDesc, true);
                    }
#endif

                    // Copy the encoded optional fields buffer to the newly allocated memory, and update the OptionalFields field on the EEType
                    // It is important to set the optional fields first on the newly created EEType, because all other 'setters'
                    // will assert that the type is dynamic, just to make sure we are not making any changes to statically compiled types
                    pEEType->OptionalFieldsPtr = (byte *)pEEType + cbEEType;
                    optionalFields.WriteToEEType(pEEType, cbOptionalFieldsSize);

#if CORERT
                    pEEType->PointerToTypeManager = PermanentAllocatedMemoryBlobs.GetPointerToIntPtr(moduleInfo.Handle);
#endif
                    pEEType->DynamicModule = dynamicModulePtr;

                    // Copy VTable entries from template type
                    int     numSlotsFilled = 0;
                    IntPtr *pVtable        = (IntPtr *)((byte *)pEEType + sizeof(EEType));
                    if (pTemplateEEType != null)
                    {
                        IntPtr *pTemplateVtable = (IntPtr *)((byte *)pTemplateEEType + sizeof(EEType));
                        for (int i = 0; i < pTemplateEEType->NumVtableSlots; i++)
                        {
                            int vtableSlotInDynamicType = requireVtableSlotMapping ? state.VTableSlotsMapping.GetVTableSlotInTargetType(i) : i;
                            if (vtableSlotInDynamicType != -1)
                            {
                                Debug.Assert(vtableSlotInDynamicType < numVtableSlots);

                                IntPtr dictionaryPtrValue;
                                if (requireVtableSlotMapping && state.VTableSlotsMapping.IsDictionarySlot(i, out dictionaryPtrValue))
                                {
                                    // This must be the dictionary pointer value of one of the base types of the
                                    // current universal generic type being constructed.
                                    pVtable[vtableSlotInDynamicType] = dictionaryPtrValue;

                                    // Assert that the current template vtable slot is also a NULL value since all
                                    // universal generic template types have NULL dictionary slot values in their vtables
                                    Debug.Assert(pTemplateVtable[i] == IntPtr.Zero);
                                }
                                else
                                {
                                    pVtable[vtableSlotInDynamicType] = pTemplateVtable[i];
                                }
                                numSlotsFilled++;
                            }
                        }
                    }
                    else if (isGenericEETypeDef)
                    {
                        // If creating a Generic Type Definition
                        Debug.Assert(pEEType->NumVtableSlots == 0);
                    }
                    else
                    {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
                        // Dynamically loaded type

                        // Fill the vtable with vtable resolution thunks in all slots except for
                        // the dictionary slots, which should be filled with dictionary pointers if those
                        // dictionaries are already published.

                        TypeDesc nextTypeToExamineForDictionarySlot = state.TypeBeingBuilt;
                        TypeDesc typeWithDictionary;
                        int      nextDictionarySlot = GetMostDerivedDictionarySlot(ref nextTypeToExamineForDictionarySlot, out typeWithDictionary);

                        for (int iSlot = pEEType->NumVtableSlots - 1; iSlot >= 0; iSlot--)
                        {
                            bool isDictionary = iSlot == nextDictionarySlot;
                            if (!isDictionary)
                            {
                                pVtable[iSlot] = LazyVTableResolver.GetThunkForSlot(iSlot);
                            }
                            else
                            {
                                if (typeWithDictionary.RetrieveRuntimeTypeHandleIfPossible())
                                {
                                    pVtable[iSlot] = typeWithDictionary.RuntimeTypeHandle.GetDictionary();
                                }
                                nextDictionarySlot = GetMostDerivedDictionarySlot(ref nextTypeToExamineForDictionarySlot, out typeWithDictionary);
                            }
                            numSlotsFilled++;
                        }
#else
                        Environment.FailFast("Template type loader is null, but metadata based type loader is not in use");
#endif
                    }

                    Debug.Assert(numSlotsFilled == numVtableSlots);

                    // Copy Pointer to finalizer method from the template type
                    if (hasFinalizer)
                    {
                        if (pTemplateEEType != null)
                        {
                            pEEType->FinalizerCode = pTemplateEEType->FinalizerCode;
                        }
                        else
                        {
#if SUPPORTS_NATIVE_METADATA_TYPE_LOADING
                            pEEType->FinalizerCode = LazyVTableResolver.GetFinalizerThunk();
#else
                            Environment.FailFast("Template type loader is null, but metadata based type loader is not in use");
#endif
                        }
                    }
                }

                // Copy the sealed vtable entries if they exist on the template type
                if (state.NumSealedVTableEntries > 0)
                {
                    state.HalfBakedSealedVTable = MemoryHelpers.AllocateMemory((int)state.NumSealedVTableEntries * IntPtr.Size);

                    UInt32 cbSealedVirtualSlotsTypeOffset = pEEType->GetFieldOffset(EETypeField.ETF_SealedVirtualSlots);
                    *((IntPtr *)((byte *)pEEType + cbSealedVirtualSlotsTypeOffset)) = state.HalfBakedSealedVTable;

                    for (UInt16 i = 0; i < state.NumSealedVTableEntries; i++)
                    {
                        IntPtr value = pTemplateEEType->GetSealedVirtualSlot(i);
                        pEEType->SetSealedVirtualSlot(value, i);
                    }
                }

                // Create a new DispatchMap for the type
                if (requiresDynamicDispatchMap)
                {
                    DispatchMap *pTemplateDispatchMap = (DispatchMap *)RuntimeAugments.GetDispatchMapForType(pTemplateEEType->ToRuntimeTypeHandle());

                    dynamicDispatchMapPtr = MemoryHelpers.AllocateMemory(pTemplateDispatchMap->Size);

                    UInt32 cbDynamicDispatchMapOffset = pEEType->GetFieldOffset(EETypeField.ETF_DynamicDispatchMap);
                    *((IntPtr *)((byte *)pEEType + cbDynamicDispatchMapOffset)) = dynamicDispatchMapPtr;

                    DispatchMap *pDynamicDispatchMap = (DispatchMap *)dynamicDispatchMapPtr;
                    pDynamicDispatchMap->NumEntries = pTemplateDispatchMap->NumEntries;

                    for (int i = 0; i < pTemplateDispatchMap->NumEntries; i++)
                    {
                        DispatchMap.DispatchMapEntry *pTemplateEntry = (*pTemplateDispatchMap)[i];
                        DispatchMap.DispatchMapEntry *pDynamicEntry  = (*pDynamicDispatchMap)[i];

                        pDynamicEntry->_usInterfaceIndex      = pTemplateEntry->_usInterfaceIndex;
                        pDynamicEntry->_usInterfaceMethodSlot = pTemplateEntry->_usInterfaceMethodSlot;
                        if (pTemplateEntry->_usImplMethodSlot < pTemplateEEType->NumVtableSlots)
                        {
                            pDynamicEntry->_usImplMethodSlot = (ushort)state.VTableSlotsMapping.GetVTableSlotInTargetType(pTemplateEntry->_usImplMethodSlot);
                            Debug.Assert(pDynamicEntry->_usImplMethodSlot < numVtableSlots);
                        }
                        else
                        {
                            // This is an entry in the sealed vtable. We need to adjust the slot number based on the number of vtable slots
                            // in the dynamic EEType
                            pDynamicEntry->_usImplMethodSlot = (ushort)(pTemplateEntry->_usImplMethodSlot - pTemplateEEType->NumVtableSlots + numVtableSlots);
                            Debug.Assert(state.NumSealedVTableEntries > 0 &&
                                         pDynamicEntry->_usImplMethodSlot >= numVtableSlots &&
                                         (pDynamicEntry->_usImplMethodSlot - numVtableSlots) < state.NumSealedVTableEntries);
                        }
                    }
                }

                if (pTemplateEEType != null)
                {
                    pEEType->DynamicTemplateType = pTemplateEEType;
                }
                else
                {
                    // Use object as the template type for non-template based EETypes. This will
                    // allow correct Module identification for types.

                    if (state.TypeBeingBuilt.HasVariance)
                    {
                        // TODO! We need to have a variant EEType here if the type has variance, as the
                        // CreateGenericInstanceDescForType requires it. However, this is a ridiculous api surface
                        // When we remove GenericInstanceDescs from the product, get rid of this weird special
                        // case
                        pEEType->DynamicTemplateType = typeof(IEnumerable <int>).TypeHandle.ToEETypePtr();
                    }
                    else
                    {
                        pEEType->DynamicTemplateType = typeof(object).TypeHandle.ToEETypePtr();
                    }
                }

                int nonGCStaticDataOffset = 0;

                if (!isArray && !isGenericEETypeDef)
                {
                    nonGCStaticDataOffset = state.HasStaticConstructor ? -TypeBuilder.ClassConstructorOffset : 0;

                    // create GC desc
                    if (state.GcDataSize != 0 && state.GcStaticDesc == IntPtr.Zero)
                    {
                        int cbStaticGCDesc;
                        state.GcStaticDesc = CreateStaticGCDesc(state.StaticGCLayout, out state.AllocatedStaticGCDesc, out cbStaticGCDesc);
#if GENERICS_FORCE_USG
                        TestGCDescsForEquality(state.GcStaticDesc, state.NonUniversalStaticGCDesc, cbStaticGCDesc, false);
#endif
                    }

                    if (state.ThreadDataSize != 0 && state.ThreadStaticDesc == IntPtr.Zero)
                    {
                        int cbThreadStaticGCDesc;
                        state.ThreadStaticDesc = CreateStaticGCDesc(state.ThreadStaticGCLayout, out state.AllocatedThreadStaticGCDesc, out cbThreadStaticGCDesc);
#if GENERICS_FORCE_USG
                        TestGCDescsForEquality(state.ThreadStaticDesc, state.NonUniversalThreadStaticGCDesc, cbThreadStaticGCDesc, false);
#endif
                    }

                    // If we have a class constructor, our NonGcDataSize MUST be non-zero
                    Debug.Assert(!state.HasStaticConstructor || (state.NonGcDataSize != 0));
                }

                if (isGeneric)
                {
                    if (!RuntimeAugments.CreateGenericInstanceDescForType(*(RuntimeTypeHandle *)&pEEType, arity, state.NonGcDataSize, nonGCStaticDataOffset,
                                                                          state.GcDataSize, (int)state.ThreadStaticOffset, state.GcStaticDesc, state.ThreadStaticDesc, state.GenericVarianceFlags))
                    {
                        throw new OutOfMemoryException();
                    }
                }
                else
                {
                    Debug.Assert(arity == 0 || isGenericEETypeDef);
                    // We don't need to report the non-gc and gc static data regions and allocate them for non-generics,
                    // as we currently place these fields directly into the image
                    if (!isGenericEETypeDef && state.ThreadDataSize != 0)
                    {
                        // Types with thread static fields ALWAYS get a GID. The GID is used to perform GC
                        // and lifetime management of the thread static data. However, these GIDs are only used for that
                        // so the specified GcDataSize, etc are 0
                        if (!RuntimeAugments.CreateGenericInstanceDescForType(*(RuntimeTypeHandle *)&pEEType, 0, 0, 0, 0, (int)state.ThreadStaticOffset, IntPtr.Zero, state.ThreadStaticDesc, null))
                        {
                            throw new OutOfMemoryException();
                        }
                    }
                }

                if (state.Dictionary != null)
                {
                    state.HalfBakedDictionary = state.Dictionary.Allocate();
                }

                Debug.Assert(!state.HalfBakedRuntimeTypeHandle.IsNull());
                Debug.Assert((state.NumSealedVTableEntries == 0 && state.HalfBakedSealedVTable == IntPtr.Zero) || (state.NumSealedVTableEntries > 0 && state.HalfBakedSealedVTable != IntPtr.Zero));
                Debug.Assert((state.Dictionary == null && state.HalfBakedDictionary == IntPtr.Zero) || (state.Dictionary != null && state.HalfBakedDictionary != IntPtr.Zero));

                successful = true;
            }
            finally
            {
                if (!successful)
                {
                    if (eeTypePtrPlusGCDesc != IntPtr.Zero)
                    {
                        MemoryHelpers.FreeMemory(eeTypePtrPlusGCDesc);
                    }
                    if (dynamicDispatchMapPtr != IntPtr.Zero)
                    {
                        MemoryHelpers.FreeMemory(dynamicDispatchMapPtr);
                    }
                    if (state.HalfBakedSealedVTable != IntPtr.Zero)
                    {
                        MemoryHelpers.FreeMemory(state.HalfBakedSealedVTable);
                    }
                    if (state.HalfBakedDictionary != IntPtr.Zero)
                    {
                        MemoryHelpers.FreeMemory(state.HalfBakedDictionary);
                    }
                    if (state.AllocatedStaticGCDesc)
                    {
                        MemoryHelpers.FreeMemory(state.GcStaticDesc);
                    }
                    if (state.AllocatedThreadStaticGCDesc)
                    {
                        MemoryHelpers.FreeMemory(state.ThreadStaticDesc);
                    }
                }
            }
        }